
TAPAS
Tests and Proofs and Synthesis

Kim G Larsen
Aalborg University, DENMARK

TAPAS
From Testing and Verification to Performance

Analysis and Synthesis
of Cyber-Physical Systems

Kim G Larsen
Aalborg University, DENMARK

CISS –
Center For Embedded Software Systems

Regional ICT Center (2002-)

 3 research groups
 Computer Science
 Control Theory
 Hardware
 Wireless Communication

 20 Employed
 25 Associated
 20 PhD Students
 70 Industrial projects
 10 Elite-students

 ARTIST Design
 ARTEMIS / ECSEL

Kim G. Larsen [3]TAP 2016, Vienna, July 5, 2016

From ES to CPS

TAP 2016, Vienna, July 5, 2016 Kim Larsen [4]

From ES to CPS

TAP 2016, Vienna, July 5, 2016 Kim Larsen [5]

New Foundation

Discrete Models

(Boolean correctness)

Quantitive Models
(time, resources,

probabilistic, stochastic,

continuous,..)

(Quantitative correctness)
Stochasticity

Real Time

Resources

Hybrid

Discrete

Model-Driven Development

TAP 2016, Vienna, July 5, 2016 Kim Larsen [6]

 High-level designs
 Early design-space

exploration
 Early error-detection
 Efficient code generation
 Automatization of

testing.
 Verification & synthesis.
 Reduced time-to-

market.
 Outsourcing
 Reuse and

reconfiguration.

MBAT (2011-2014)
Model-Based Analysis & Test

TAP 2016, Vienna, July 5, 2016 Kim Larsen [7]

12 8 Sept. 2010© MBAT Consortium

MBAT Partners

AVL

Daimler

EADS-IW

Thales

Alstom

CEA

PikeTec

FH IESE

Ricardo

MDH

Aalborg

University

Elvior

AIT

Verified

Absint

Airbus

ENS

OFFIS

MBtech

BTC-ES

KTH

Volvo

Selex Sistemi Integrati

AleniaSIA

Prover

Rockwell

Colins TUM

EADS-DE

Siemens

TU Graz

AMET

GeenSoft

ALES

Ansaldo STS

VIF

Infineon Austria

All4Tec

IBM

Large Company,

technology user

SME, technology

provider

Large Tool Provider

Researcher,

technology provider

National Co-ordinator

ENEA

11 8 Sept. 2010© MBAT Consortium

Model Based Analysis & Test / ARTEMIS Project (Nov 1, 2011)

MBAT will provide Europe with a new leading-edge Reference Technology

Platform for effective and cost-reducing Validation and Verification of

Embedded Systems

MBAT will enable the production of high-quality and short-time-to-market

transportation products at reduced development costs

ITOS (2015)
Industrial Technology and Software

TAP 2016, Vienna, July 5, 2016 Kim Larsen [8]

Model Driven Development

TAP 2016, Vienna, July 5, 2016 9

Model

void HandleError(unsigned char ccArg)

{

printf("Error code %c detected, exiting application.\n", ccArg);

exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a

* system. It purpose is to generate events. How this is done is up to

* you.

*/

void OS_Wait(void)

{

/* Ignore the parameters; just retrieve events from the keyboard and

* put them into the queue. When EVENT_UNDEFINED is read from the

* keyboard, return to the calling process. */

SEM_EVENT_TYPE event;

int num;

Code

Running System

Req

FFFF

TAP 2016, Vienna, July 5, 2016 10

Model

void HandleError(unsigned char ccArg)

{

printf("Error code %c detected, exiting application.\n", ccArg);

exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a

* system. It purpose is to generate events. How this is done is up to

* you.

*/

void OS_Wait(void)

{

/* Ignore the parameters; just retrieve events from the keyboard and

* put them into the queue. When EVENT_UNDEFINED is read from the

* keyboard, return to the calling process. */

SEM_EVENT_TYPE event;

int num;

Code

Running System

Req

FFFF

Model Checking

Characteristics:

Automata-based

Rich class of properties

Exact Analysis

State-space Explosion

TAP 2016, Vienna, July 5, 2016 11

Model

void HandleError(unsigned char ccArg)

{

printf("Error code %c detected, exiting application.\n", ccArg);

exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a

* system. It purpose is to generate events. How this is done is up to

* you.

*/

void OS_Wait(void)

{

/* Ignore the parameters; just retrieve events from the keyboard and

* put them into the queue. When EVENT_UNDEFINED is read from the

* keyboard, return to the calling process. */

SEM_EVENT_TYPE event;

int num;

Code

Running System

Req

FFFF

Testing & Statistical MC

FFF
Characteristics:

System-based

Very rich properties

(Under) approximate

Scalable

TAP 2016, Vienna, July 5, 2016 12

Model

void HandleError(unsigned char ccArg)

{

printf("Error code %c detected, exiting application.\n", ccArg);

exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a

* system. It purpose is to generate events. How this is done is up to

* you.

*/

void OS_Wait(void)

{

/* Ignore the parameters; just retrieve events from the keyboard and

* put them into the queue. When EVENT_UNDEFINED is read from the

* keyboard, return to the calling process. */

SEM_EVENT_TYPE event;

int num;

Code

Running System

Req

FF

Static Analysis

Characteristics:

Code-based

Shallow properties

(Over) Approximate

Scalable

TAP 2016, Vienna, July 5, 2016 13

Model

void HandleError(unsigned char ccArg)

{

printf("Error code %c detected, exiting application.\n", ccArg);

exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a

* system. It purpose is to generate events. How this is done is up to

* you.

*/

void OS_Wait(void)

{

/* Ignore the parameters; just retrieve events from the keyboard and

* put them into the queue. When EVENT_UNDEFINED is read from the

* keyboard, return to the calling process. */

SEM_EVENT_TYPE event;

int num;

Code

Running System

Req

FF

Synthesis

TAP 2016, Vienna, July 5, 2016 14

Model

void HandleError(unsigned char ccArg)

{

printf("Error code %c detected, exiting application.\n", ccArg);

exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a

* system. It purpose is to generate events. How this is done is up to

* you.

*/

void OS_Wait(void)

{

/* Ignore the parameters; just retrieve events from the keyboard and

* put them into the queue. When EVENT_UNDEFINED is read from the

* keyboard, return to the calling process. */

SEM_EVENT_TYPE event;

int num;

Code

Running System

Req

FF

Synthesis

Characteristics:

Rich Properties

Automatic generation of code

Easy reprogrammable

Complexity

UPPAAL Tool Suit

TAP 2016, Vienna, July 5, 2016 Kim Larsen [15]

CLASSIC

TIGA

CORA

ECDAR

SMC

Optimization

Synthesis

Component

Testing

Performance
Analysis

Verification

STRATEGOOptimal Synthesis

TRON

Overview

 Timed Automata / UPPAAL
 Verification

 Stochastic Priced Timed Automata / UPPAAL SMC
 Performance Evaluation

 SMC in a Nutshell

 Stochastic Hybrid Automata

 Timed Games / UPPAAL TIGA
 Controller Syntesis

 Stochastic Priced Timed Games / UPPAAL STRATEGO
 Optimal & Safe Synthesis

 Conclusion

TAP 2016, Vienna, July 5, 2016 Kim Larsen [16]

Train Gate

Floor Heating

Adaptive Cruise Control

Train Gate

Train Gate

Schedulability Analysis

Train Gate

Overview

 Timed Automata / UPPAAL
 Verification

 Stochastic Priced Timed Automata / UPPAAL SMC
 Performance Evaluation

 SMC in a Nutshell

 Stochastic Hybrid Automata

 Timed Games / UPPAAL TIGA
 Controller Syntesis

 Stochastic Priced Timed Games / UPPAAL STRATEGO
 Optimal & Safe Synthesis

 Conclusion

TAP 2016, Vienna, July 5, 2016 Kim Larsen [17]

Train Gate

Floor Heating

Adaptive Cruise Control

Train Gate

Train Gate

Schedulability Analysis

Train Gate

Train Scheduling

River

Crossing

Gate

Stopable
Area

[10,20]

[7,15]

list

[3,5]appr
stop

leave

go
enqueue()
dequeue()
front()

Communication via channels!

TAP 2016, Vienna, July 5, 2016 Kim Larsen [18]

Timed Automata [Train]
= Finite State Control

+ Real Valued Clocks

invariants

Guards

Synchronizations

Resets

Kim Larsen [19]TAP 2016, Vienna, July 5, 2016

SEMANTICS
(Appr , x=0) -5.2->
(Appr , x=5.2) –stop? ->
(Stop , x=5.2)

Logical Specifications

 Validation Properties

 Possibly: E<> P

 Safety Properties

 Invariant: A[] P

 Pos. Inv.: E[] P

 Liveness Properties

 Eventually: A<> P

 Leadsto: P Q

 Bounded Liveness

 Leads to within: P · t Q

The expressions P and
Q must be type safe,
side effect free, and
evaluate to a boolean.

Only references to
integer variables,
constants, clocks,

and locations are
allowed (and arrays of
these).

TAP 2016, Vienna, July 5, 2016 Kim Larsen [20]

DEMO

THE ”secret” of UPPAAL

TAP 2016, Vienna, July 5, 2016 Kim Larsen [22]

Datastructures for Zones

TAP 2016, Vienna, July 5, 2016 Kim Larsen [23]

 Difference Bounded
Matrices (DBMs)

 Minimal Constraint
Form

[RTSS97]

 Clock Difference
Diagrams

[CAV99]

x1 x2

x3x0

-4

4

2

2

5

3 3 -2 -2

1

Overview

 Timed Automata / UPPAAL
 Verification

 Stochastic Priced Timed Automata / UPPAAL SMC
 Performance Evaluation

 SMC in a Nutshell

 Stochastic Hybrid Automata

 Timed Games / UPPAAL TIGA
 Controller Syntesis

 Stochastic Priced Timed Games / UPPAAL STRATEGO
 Optimal & Safe Synthesis

 Conclusion

TAP 2016, Vienna, July 5, 2016 Kim Larsen [24]

Train Gate

Floor Heating

Adaptive Cruise Control

Train Gate

Train Gate

Schedulability Analysis

Train Gate

Stochastic Semantics of TA

TAP 2016, Vienna, July 5, 2016 Kim Larsen [25]

Uniform Distribution
Exponential Distribution

Input enabled
Composition =
Repeated races between components
for outputting

1

2 3 4 5

0.5

1

Composition of STA

Composition = Race between components

for outputting

Kim Larsen [26]TAP 2016, Vienna, July 5, 2016

Pr[time<=2](<> T.T3) ?

Pr[time<=T](<> T.T3) ?

= න
𝑡𝑎=0

1

1 ⋅ න
𝑡𝑏=𝑡𝑎

2

½ 𝑑𝑡𝑏 𝑑𝑡𝑎 = 3/4

Beyond Uniform / Exponential Dist.

TAP 2016, Vienna, July 5, 2016 Kim Larsen [27]

Includes all
Phase-Type

Distributions.

Can encode any
distribution with

arbitrary

precision.

𝜎-algebra with prob. measure from cylinders 𝑪(𝑰𝟎 ℓ𝟎 𝑰𝟏 ℓ𝟏 𝑰𝟐… 𝑰𝒏 ℓ𝒏+𝟏)

Pr 〈〉≤9 END = ½

Pr 〈〉≤7 END ≥ ½

Statistical Model Checking

M

𝝓

µ, 𝝐

Generate
random run π

Validate
𝝅 ⊨ 𝝓 ?

Core Statistical
Algorithm

In
c
o
n
c
lu

s
iv

e

PrM(𝝓) 2 [a-𝝐,a+𝝐]
with confidence µ

p, 𝜶

PrM(𝝓) ¸ p
at significance level 𝜶

}<T p

[FORMATS11,
LPAR12, RV12]

TAP 2016, Vienna, July 5, 2016 Kim Larsen [28]

Confidence
Interval

Hypothesis
testing

Reachability
MITL

Queries in UPPAAL Syntax

 Evaluation
Pr[<=100](<> expr) Pr(𝚽):𝚽 ∈ 𝑴𝑰𝑻𝑳

Hypothesis testing
Pr[<=100](<> expr) >= 0.1

c<=100 #<=50 [] expr <=0.5

 Comparison
Pr[<=20](<> e1) >= Pr[<=10](<> e2)

 Expected value
E[<=10;1000](min: expr)

Explicit number of runs. Min or max.

 Simulations
simulate 10 [<=100]{expr1,expr2}

TAP 2016, Vienna, July 5, 2016 Kim Larsen [29]

DEMO

Schedulability
& Performance Analysis

??

Task Scheduling

TAP 2016, Vienna, July 5, 2016 Kim Larsen [32]

T2 is running
{ T4 , T1 , T3 } ready
ordered according to some
given priority:
(e.g. Fixed Priority, Earliest Deadline,..)

T1

T2

Tn

Scheduler

2 14 3

ready
done

stop
run

P(i), UNI[E(i), L(i)], .. : period or
earliest/latest arrival or .. for Ti

C(i), UNI[BC(i),WC(i)] : execution time for Ti

D(i): deadline for Ti

utilization of CPU

Modeling Task

TAP 2016, Vienna, July 5, 2016 Kim Larsen [33]

T1

T2

Tn

Scheduler

2 14 3

ready
done

stop
run

Modeling Scheduler

TAP 2016, Vienna, July 5, 2016 Kim Larsen [34]

T1

T2

Tn

Scheduler

2 14 3

ready
done

stop
run

Modeling Queue

TAP 2016, Vienna, July 5, 2016 Kim Larsen [35]

T1

T2

Tn

Scheduler

2 14 3

ready
done

stop
run

……

Schedulability Analysis

TAP 2016, Vienna, July 5, 2016 Kim Larsen [36]

const int E[N] = { 200, 200, 100, 100 };

const int L[N] = { 400, 200, 100, 100 }; // Ready interval

const int D[N] = { 400, 200, 100, 100 }; // Deadlines

const int WC[N] = { 60, 40, 20, 10 }; // Worst Computation Times

const int BC[N] = { 20, 20, 10, 5 }; // Best Computation Times

const int P[N] = { 1, 2, 3, 4 }; // Priorities

simulate 1 [<=400]
{ Task0.Ready + 2*Task0.Running +3*Task0.Blocked,

Task1.Ready + 2*Task1.Running +3*Task1.Blocked + 4,
Task2.Ready + 2*Task2.Running + 3*Task2.Blocked + 8,
Task3.Ready + 2*Task3.Running + 3*Task3.Blocked +12 }

A[] not (Task0.Error or Task1.Error
or Task2.Error or Task3.Error)

Schedulability Analysis

TAP 2016, Vienna, July 5, 2016 Kim Larsen [37]

const int E[N] = { 200, 200, 100, 100 };

const int L[N] = { 400, 200, 100, 100 }; // Ready interval

const int D[N] = { 400, 200, 100, 100 }; // Deadlines

const int WC[N] = { 60, 40, 20, 60 }; // Worst Computation Times

const int BC[N] = { 20, 20, 10, 5 }; // Best Computation Times

const int P[N] = { 1, 2, 3, 4 }; // Priorities

A[] (not Taski.Error) i : 0,1,2,3

Pr[<=4000]
(<> Task0.Error or Task1.Error

or Task2.Error or Task3.Error)

simulate 10000 [<=400]
{ Task0.Ready + 2*Task0.Running +3*Task0.Blocked,

Task1.Ready + 2*Task1.Running +3*Task1.Blocked + 4,
Task2.Ready + 2*Task2.Running + 3*Task2.Blocked + 8,
Task3.Ready + 2*Task3.Running + 3*Task3.Blocked +12 }
: 1 : (Task0.Error or Task1.Error or Task2.Error or Task3.Error)

Performance Analysis

TAP 2016, Vienna, July 5, 2016 Kim Larsen [38]

sup : Task2.r, Task3.r

Performance Analysis

TAP 2016, Vienna, July 5, 2016 Kim Larsen [39]

E[<=800; 5000] (max: Task0.r)
E[<=800; 5000] (max: Task0.r)
E[<=800; 5000] (max: Task0.r)
E[<=800; 5000] (max: Task0.r)

D=400

D=200

D=100

D=100

Herschel-Planck Scientific Mission at ESA

TAP 2016, Vienna, July 5, 2016 Kim Larsen [40]

Attitude and Orbit Control Software
TERMA A/S Steen Ulrik Palm, Jan Storbank Pedersen, Poul Hougaard

Herschel & Planck Satelites

 Application software (ASW)
 built and tested by Terma:

 does attitude and orbit control, tele-
commanding, fault detection isolation and
recovery.

 Basic software (BSW)
 low level communication and scheduling

periodic events.

 Real-time operating system (RTEMS)
 Priority Ceiling for ASW,

 Priority Inheritance for BSW

 Hardware
 single processor, a few communication

buses, sensors and actuators.

Kim Larsen [41]TAP 2016, Vienna, July 5, 2016

Requirements:
Software tasks should be schedulable.
CPU utilization should not exceed 50% load

Modeling in UPPAAL

TAP 2016, Vienna, July 5, 2016 Kim Larsen [42]

UPPAAL 4.1 Framework
ISoLA 2010

Gantt Chart 1. cycle

Kim Larsen [43]TAP 2016, Vienna, July 5, 2016

Blocking & WCRT

TAP 2016, Vienna, July 5, 2016 Page 44

Marius Micusionis

thanks and a few qeustions.eml
thanks and a few qeustions.eml

Effort and Utilization

TAP 2016, Vienna, July 5, 2016 Page 45

Marius Micusionis

thanks and a few qeustions.eml
thanks and a few qeustions.eml

TERMA Case Follow-Up

TAP 2016, Vienna, July 5, 2016 Kim Larsen [46]

[f*WCET, WCET]

1 Day

6 Days

f=100% f=95%

f=90% f=86%

ISOLA 2012

TERMA Case - Statistical MC

TAP 2016, Vienna, July 5, 2016 Kim Larsen [47]

TERMA Case – Conclusion

TAP 2016, Vienna, July 5, 2016 Kim Larsen [48]

Statistical Model Checking
of Stochastic Hybrid Systems

TAP 2016, Vienna, July 5, 2016 Kim Larsen [49]

FIREWIRE BLUETOOTH 10 node LMAC

Battery

Scheduling
Energy Aware

Buildings

Genetic Oscilator

(HBS)

Schedulability

Analysis for

Mix Cr Sys

Smart Grid

Demand /

Response

Cell Cycle

Swithch

SMC

Overview

 Timed Automata / UPPAAL
 Verification

 Stochastic Priced Timed Automata / UPPAAL SMC
 Performance Evaluation

 SMC in a Nutshell

 Stochastic Hybrid Automata

 Timed Games / UPPAAL TIGA
 Controller Syntesis

 Stochastic Priced Timed Games / UPPAAL STRATEGO
 Optimal & Safe Synthesis

 Conclusion

TAP 2016, Vienna, July 5, 2016 Kim Larsen [50]

Train Gate

Floor Heating

Adaptive Cruise Control

Train Gate

Train Gate

Schedulability Analysis

Train Gate

Model Checking (ex Train Gate)

TAP 2016, Vienna, July 5, 2016 Kim Larsen [51]

: Never two trains at

the crossing at the

same time

Environment

Controller

Synthesis (ex Train Gate)

TAP 2016, Vienna, July 5, 2016 Kim Larsen [52]

: Never two trains at

the crossing at the

same time

Environment

Controller

?

Timed Games

TAP 2016, Vienna, July 5, 2016 Kim Larsen [53]

: Never two trains at

the crossing at the

same time

Controllable Uncontrollable

Synthesize strategy for controllable

actions st behaviour satisfies

Controller

Environment

DEMO

Timed Games

TAP 2016, Vienna, July 5, 2016 Kim Larsen [55]

: Never two trains at

the crossing at the

same time

Controllable Uncontrollable

Find strategy for controllable

actions st behaviour satisfies

Controller

Environment

Overview

 Timed Automata / UPPAAL
 Verification

 Stochastic Priced Timed Automata / UPPAAL SMC
 Performance Evaluation

 SMC in a Nutshell

 Stochastic Hybrid Automata

 Timed Games / UPPAAL TIGA
 Controller Syntesis

 Stochastic Priced Timed Games / UPPAAL STRATEGO
 Optimal & Safe Synthesis

 Conclusion

TAP 2016, Vienna, July 5, 2016 Kim Larsen [56]

Train Gate

Floor Heating

Adaptive Cruise Control

Train Gate

Train Gate

Schedulability Analysis

Train Gate

Stochastic Timed Game

TAP 2016, Vienna, July 5, 2016 Kim Larsen [57]

G
Timed Game

σ
Strategy

P
Stochastic

Priced
Timed Game

P|σ

φ

synthesis

abstraction

σ°
optimized
Strategy

G|σ
Timed Automata

P|σ°
Stochastic Priced
Timed Automata

minE(cost)

maxE(gain)

Uppaal TIGA
strategy NS = control: A<> goal
strategy NS = control: A[] safe

Statistical Learning

strategy DS = minE (cost) [<=10]: <> done under NS
strategy DS = maxE (gain) [<=10]: <> done under NS

Uppaal
E<> error under NS
A[] safe under NS

Uppaal SMC
simulate 5 [<=10]{e1, e2} under SS
Pr[<=10](<> error) under SS
E[<=10;100](max: cost) under SS

DEMO

Reinforcement Learning

TAP 2016, Vienna, July 5, 2016 Kim Larsen [60]

Time Bounded Reachability
(G,T)

TIGA

SMC

SMC

Synthesis of
Safe & Adaptive Cruice Control

TAP 2016, Vienna, July 5, 2016 Kim Larsen [61]

Q1: Find a safety strategy for Ego such no crash will ever
occur no matter what Front is doing.

Q2: Find the most permissive strategy ensuring safety
Q3: Find the optimal sub-strategy that will allow Ego to go

as far as possible (without overtaking).

EGO FRONT

Two Player Game (simplified)

TAP 2016, Vienna, July 5, 2016 Kim Larsen [62]

Front (complete)

TAP 2016, Vienna, July 5, 2016 Kim Larsen [63]

No Strategy

TAP 2016, Vienna, July 5, 2016 Kim Larsen [64]

Safety Strategy

TAP 2016, Vienna, July 5, 2016 Kim Larsen [65]

Safety Strategy (Code)

TAP 2016, Vienna, July 5, 2016 Kim Larsen [66]

Safety Strategy

TAP 2016, Vienna, July 5, 2016 Kim Larsen [67]

Optimal and Safe Strategy

TAP 2016, Vienna, July 5, 2016 Kim Larsen [68]

Synthesis of Climate Controllers

TAP 2016, Vienna, July 5, 2016 Kim Larsen [69]

TACAS16

Synthesis of Climate Controllers

TAP 2016, Vienna, July 5, 2016 Kim Larsen [70]

TACAS16

3 day scenario

Modified parameters (0-20%)

Synthesis of Home Automation

TAP 2016, Vienna, July 5, 2016 Kim Larsen [71]

Industrial Applications

TAP 2016, Vienna, July 5, 2016 Kim Larsen [72]

Skov

GOMSpace

HYDAC

SELUXIT

 Safe and optimal adaptive
cruise control

 Zone-based climate
control pig-stables

 Profit-optimal, energy-
aware schedules for
satelittes

 Personalized light control
in home automation

 Energy- and comfort-
optimal floor heating

 Safe and energy optimal
control of hydralic pumps

Conclusion & Future Work

 Strategies - Representation

 Non-determinstic strategies 𝜎(ℓ,𝑣)
𝑛 ⊆ Σ𝑐 ∪ 𝜆

 Stochastic strategies 𝜇(ℓ,𝑣)
𝑠 : Σ𝑐 ∪ 𝜆 → [0,1]

 Verification of learned strategy

 Better learning methods (Q-learning)

 Beyond safety objectives (MITL)

 Most (or maximal) permissive strategies

 Verification of discrete strategy for hybrid
games

 Partial observability

TAP 2016, Vienna, July 5, 2016 Kim Larsen [73]

LASSO
Learning, Analysis, SynthesiS and Optimization

of Cyber-Physical Systems

 1…

𝜇1…𝜇𝑛

Safety Constraints

Perf. Measures

Model of

Physical Comp.
Model of

Cyber Comp.

Unknown

Known

Learning

Analysis

Synthesize

Optimize

Fig 1. The LASSO Framework

Contact: kgl@cs.aau.dk

Future Work

TAP 2016, Vienna, July 5, 2016 74

LASSO
Learning, Analysis, SynthesiS and Optimization

of Cyber-Physical Systems

Contact: kgl@cs.aau.dkTAP 2016, Vienna, July 5, 2016

 METRICS

Future Work

75

www.uppaal.org

TAP 2016, Vienna, July 5, 2016 Kim Larsen [76]

