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CISS –
Center For Embedded Software Systems

Regional ICT Center (2002- )

 3 research groups
 Computer Science
 Control Theory
 Hardware
 Wireless Communication

 20 Employed
 25 Associated
 20 PhD Students
 70 Industrial projects
 10 Elite-students

 ARTIST Design
 ARTEMIS / ECSEL
 ... ...
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From ES to CPS
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New Foundation

Discrete Models

(Boolean correctness)



Quantitive Models
(time, resources,

probabilistic, stochastic,

continuous,..)

(Quantitative correctness)
Stochasticity

Real Time

Resources

Hybrid 

Discrete



Model-Driven Development

TAP 2016, Vienna, July 5, 2016 Kim Larsen [6]

 High-level designs
 Early design-space

exploration
 Early error-detection
 Efficient code generation
 Automatization of 

testing.
 Verification & synthesis.
 Reduced time-to-

market.
 Outsourcing
 Reuse and 

reconfiguration. 



MBAT (2011-2014)
Model-Based Analysis & Test
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Model Based Analysis & Test / ARTEMIS Project (Nov 1, 2011)

MBAT will provide Europe with a new leading-edge Reference Technology 

Platform for effective and cost-reducing Validation and Verification of 

Embedded Systems

MBAT will enable the production of high-quality and short-time-to-market

transportation products at reduced development costs



ITOS (2015)
Industrial Technology and Software
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Model Driven Development
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Model

void HandleError(unsigned char ccArg)

{

printf("Error code %c detected, exiting application.\n", ccArg);

exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a

* system. It purpose is to generate events. How this is done is up to

* you.

*/

void OS_Wait(void)

{

/*  Ignore the parameters; just retrieve events from the keyboard and

*  put them into the queue. When EVENT_UNDEFINED is read from the

*  keyboard, return to the calling process. */

SEM_EVENT_TYPE event;

int num;

Code

Running System

Req

FFFF
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Model

void HandleError(unsigned char ccArg)

{

printf("Error code %c detected, exiting application.\n", ccArg);

exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a

* system. It purpose is to generate events. How this is done is up to

* you.

*/

void OS_Wait(void)

{

/*  Ignore the parameters; just retrieve events from the keyboard and

*  put them into the queue. When EVENT_UNDEFINED is read from the

*  keyboard, return to the calling process. */

SEM_EVENT_TYPE event;

int num;

Code

Running System

Req

FFFF

Model Checking

Characteristics:

Automata-based

Rich class of properties

Exact Analysis

State-space Explosion
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Model

void HandleError(unsigned char ccArg)

{

printf("Error code %c detected, exiting application.\n", ccArg);

exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a

* system. It purpose is to generate events. How this is done is up to

* you.

*/

void OS_Wait(void)

{

/*  Ignore the parameters; just retrieve events from the keyboard and

*  put them into the queue. When EVENT_UNDEFINED is read from the

*  keyboard, return to the calling process. */

SEM_EVENT_TYPE event;

int num;

Code

Running System

Req

FFFF

Testing & Statistical MC 

FFF
Characteristics:

System-based

Very rich properties

(Under) approximate

Scalable
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Model

void HandleError(unsigned char ccArg)

{

printf("Error code %c detected, exiting application.\n", ccArg);

exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a

* system. It purpose is to generate events. How this is done is up to

* you.

*/

void OS_Wait(void)

{

/*  Ignore the parameters; just retrieve events from the keyboard and

*  put them into the queue. When EVENT_UNDEFINED is read from the

*  keyboard, return to the calling process. */

SEM_EVENT_TYPE event;

int num;

Code

Running System

Req

FF

Static Analysis

Characteristics:

Code-based

Shallow properties

(Over) Approximate

Scalable
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Model

void HandleError(unsigned char ccArg)

{

printf("Error code %c detected, exiting application.\n", ccArg);

exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a

* system. It purpose is to generate events. How this is done is up to

* you.

*/

void OS_Wait(void)

{

/*  Ignore the parameters; just retrieve events from the keyboard and

*  put them into the queue. When EVENT_UNDEFINED is read from the

*  keyboard, return to the calling process. */

SEM_EVENT_TYPE event;

int num;

Code

Running System

Req

FF

Synthesis
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Model

void HandleError(unsigned char ccArg)

{

printf("Error code %c detected, exiting application.\n", ccArg);

exit(ccArg);

}

/* In d-241 we only use the OS_Wait call. It is used to simulate a

* system. It purpose is to generate events. How this is done is up to

* you.

*/

void OS_Wait(void)

{

/*  Ignore the parameters; just retrieve events from the keyboard and

*  put them into the queue. When EVENT_UNDEFINED is read from the

*  keyboard, return to the calling process. */

SEM_EVENT_TYPE event;

int num;

Code

Running System

Req

FF

Synthesis

Characteristics:

Rich Properties

Automatic generation of code

Easy reprogrammable

Complexity



UPPAAL Tool Suit
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CLASSIC

TIGA

CORA

ECDAR

SMC

Optimization

Synthesis

Component

Testing

Performance
Analysis

Verification

STRATEGOOptimal Synthesis

TRON



Overview

 Timed Automata / UPPAAL
 Verification

 Stochastic Priced Timed Automata / UPPAAL SMC
 Performance Evaluation

 SMC in a Nutshell

 Stochastic Hybrid Automata

 Timed Games / UPPAAL TIGA
 Controller Syntesis

 Stochastic Priced Timed Games / UPPAAL STRATEGO
 Optimal & Safe Synthesis

 Conclusion
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Train Gate

Floor Heating

Adaptive Cruise Control

Train Gate

Train Gate

Schedulability Analysis

Train Gate
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Train Gate

Floor Heating

Adaptive Cruise Control

Train Gate
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Schedulability Analysis
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Train Scheduling

River

Crossing

Gate

Stopable
Area

[10,20]

[7,15]

list

[3,5]appr
stop

leave

go
enqueue()
dequeue()
front()

Communication via channels!

TAP 2016, Vienna, July 5, 2016 Kim Larsen [18]



Timed Automata [Train]
= Finite State Control

+  Real Valued Clocks

invariants

Guards

Synchronizations

Resets

Kim Larsen [19]TAP 2016, Vienna, July 5, 2016

SEMANTICS
( Appr , x=0 ) -5.2->
( Appr , x=5.2 ) –stop? ->
( Stop ,  x=5.2 )



Logical Specifications

 Validation Properties

 Possibly: E<> P

 Safety Properties

 Invariant: A[] P

 Pos. Inv.: E[] P

 Liveness Properties

 Eventually: A<> P

 Leadsto: P  Q

 Bounded Liveness

 Leads to within: P · t Q

The expressions  P  and 
Q  must be type safe, 
side effect free, and 
evaluate to a boolean.

Only references to 
integer variables, 
constants, clocks, 

and locations are
allowed (and arrays of 
these).

TAP 2016, Vienna, July 5, 2016 Kim Larsen [20]



DEMO



THE ”secret” of UPPAAL

TAP 2016, Vienna, July 5, 2016 Kim Larsen [22]



Datastructures for Zones

TAP 2016, Vienna, July 5, 2016 Kim Larsen [23]

 Difference Bounded 
Matrices (DBMs)

 Minimal Constraint 
Form 

[RTSS97]

 Clock Difference 
Diagrams 

[CAV99]

x1 x2

x3x0

-4

4

2

2

5

3 3 -2 -2

1



Overview

 Timed Automata / UPPAAL
 Verification

 Stochastic Priced Timed Automata / UPPAAL SMC
 Performance Evaluation

 SMC in a Nutshell

 Stochastic Hybrid Automata

 Timed Games / UPPAAL TIGA
 Controller Syntesis
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Train Gate

Floor Heating

Adaptive Cruise Control

Train Gate

Train Gate

Schedulability Analysis

Train Gate



Stochastic Semantics of TA
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Uniform Distribution
Exponential Distribution

Input enabled
Composition =
Repeated races between components 
for outputting

1

2 3 4 5

0.5

1



Composition of STA

Composition = Race between components

for outputting 

Kim Larsen [26]TAP 2016, Vienna, July 5, 2016

Pr[time<=2](<> T.T3) ?

Pr[time<=T](<> T.T3) ?

= න
𝑡𝑎=0

1

1 ⋅ න
𝑡𝑏=𝑡𝑎

2

½ 𝑑𝑡𝑏 𝑑𝑡𝑎 = 3/4



Beyond Uniform / Exponential Dist. 
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Includes all 
Phase-Type

Distributions.

Can encode any 
distribution with

arbitrary 

precision.

𝜎-algebra with prob. measure from cylinders 𝑪(𝑰𝟎 ℓ𝟎 𝑰𝟏 ℓ𝟏 𝑰𝟐… 𝑰𝒏 ℓ𝒏+𝟏)

Pr 〈〉≤9 END = ½

Pr 〈〉≤7 END ≥ ½



Statistical Model Checking

M

𝝓

µ, 𝝐

Generate 
random run π

Validate
𝝅 ⊨ 𝝓 ?

Core Statistical
Algorithm

In
c
o
n
c
lu

s
iv

e

PrM(𝝓) 2 [a-𝝐,a+𝝐] 
with confidence µ

p, 𝜶

PrM(𝝓) ¸ p
at significance level 𝜶

}<T p

[FORMATS11,
LPAR12, RV12]

TAP 2016, Vienna, July 5, 2016 Kim Larsen [28]

Confidence
Interval

Hypothesis
testing

Reachability
MITL



Queries in UPPAAL Syntax

 Evaluation
Pr[<=100](<> expr)     Pr(𝚽):𝚽 ∈ 𝑴𝑰𝑻𝑳

Hypothesis testing
Pr[<=100](<> expr) >= 0.1

c<=100 #<=50 [] expr <=0.5

 Comparison
Pr[<=20](<> e1) >= Pr[<=10](<> e2)

 Expected value
E[<=10;1000](min: expr)

Explicit number of runs. Min or max.

 Simulations
simulate 10 [<=100]{expr1,expr2}

TAP 2016, Vienna, July 5, 2016 Kim Larsen [29]



DEMO



Schedulability
& Performance Analysis

??



Task Scheduling
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T2 is running
{ T4 , T1 , T3 } ready
ordered according to some
given priority:
(e.g. Fixed Priority, Earliest Deadline,..)

T1

T2

Tn

Scheduler

2 14 3

ready
done

stop
run

P(i), UNI[E(i), L(i)], .. : period or 
earliest/latest arrival or ..  for Ti

C(i), UNI[BC(i),WC(i)] : execution time for Ti

D(i): deadline for Ti

utilization of CPU



Modeling Task
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T1

T2

Tn

Scheduler

2 14 3

ready
done

stop
run



Modeling Scheduler

TAP 2016, Vienna, July 5, 2016 Kim Larsen [34]

T1

T2

Tn

Scheduler

2 14 3

ready
done

stop
run



Modeling Queue
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T1

T2

Tn

Scheduler

2 14 3

ready
done

stop
run

……



Schedulability Analysis

TAP 2016, Vienna, July 5, 2016 Kim Larsen [36]

const int E[N] = { 200, 200, 100, 100 };

const int L[N] = { 400, 200, 100, 100 };  // Ready interval

const int D[N] = { 400, 200, 100, 100 };  // Deadlines

const int WC[N] = { 60,  40,  20,  10 };  // Worst Computation Times

const int BC[N] = { 20,  20,  10,   5 }; // Best Computation Times

const int P[N] = {   1,   2,   3,   4 };  // Priorities

simulate  1 [<=400] 
{ Task0.Ready + 2*Task0.Running +3*Task0.Blocked, 

Task1.Ready + 2*Task1.Running +3*Task1.Blocked  + 4,  
Task2.Ready + 2*Task2.Running + 3*Task2.Blocked + 8,  
Task3.Ready + 2*Task3.Running + 3*Task3.Blocked +12 }

A[] not (Task0.Error or Task1.Error 
or Task2.Error or Task3.Error) 



Schedulability Analysis
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const int E[N] = { 200, 200, 100, 100 };

const int L[N] = { 400, 200, 100, 100 };  // Ready interval

const int D[N] = { 400, 200, 100, 100 };  // Deadlines

const int WC[N] = { 60,  40,  20,  60 };  // Worst Computation Times

const int BC[N] = { 20,  20,  10,   5 }; // Best Computation Times

const int P[N] = {   1,   2,   3,   4 };  // Priorities

A[] (not Taski.Error)   i : 0,1,2,3 


Pr[<=4000] 
( <> Task0.Error or Task1.Error 

or Task2.Error or Task3.Error)

simulate  10000 [<=400] 
{ Task0.Ready + 2*Task0.Running +3*Task0.Blocked, 

Task1.Ready + 2*Task1.Running +3*Task1.Blocked  + 4,  
Task2.Ready + 2*Task2.Running + 3*Task2.Blocked + 8,  
Task3.Ready + 2*Task3.Running + 3*Task3.Blocked +12 }
: 1 : (Task0.Error or Task1.Error or Task2.Error or Task3.Error)

  



Performance Analysis
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sup : Task2.r, Task3.r



Performance Analysis
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E[<=800; 5000] (max: Task0.r)
E[<=800; 5000] (max: Task0.r)
E[<=800; 5000] (max: Task0.r)
E[<=800; 5000] (max: Task0.r)

D=400

D=200

D=100

D=100



Herschel-Planck Scientific Mission at ESA

TAP 2016, Vienna, July 5, 2016 Kim Larsen [40]

Attitude and Orbit Control Software
TERMA A/S Steen Ulrik Palm, Jan Storbank Pedersen, Poul Hougaard



Herschel & Planck Satelites

 Application software (ASW) 
 built and tested by Terma:

 does attitude and orbit control, tele-
commanding, fault detection isolation and 
recovery.

 Basic software (BSW)  
 low level communication and scheduling 

periodic events.

 Real-time operating system (RTEMS)
 Priority Ceiling for ASW, 

 Priority Inheritance for BSW

 Hardware
 single processor, a few communication 

buses, sensors and actuators.

Kim Larsen [41]TAP 2016, Vienna, July 5, 2016

Requirements:
Software tasks should be schedulable.
CPU utilization should not exceed 50% load



Modeling in UPPAAL
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UPPAAL 4.1 Framework
ISoLA 2010



Gantt Chart 1. cycle

Kim Larsen [43]TAP 2016, Vienna, July 5, 2016



Blocking & WCRT

TAP 2016, Vienna, July 5, 2016 Page 44

Marius Micusionis

thanks and a few qeustions.eml
thanks and a few qeustions.eml


Effort and Utilization

TAP 2016, Vienna, July 5, 2016 Page 45

Marius Micusionis

thanks and a few qeustions.eml
thanks and a few qeustions.eml


TERMA Case Follow-Up

TAP 2016, Vienna, July 5, 2016 Kim Larsen [46]

[ f*WCET, WCET]

1 Day

6 Days

f=100% f=95%

f=90% f=86%

ISOLA 2012



TERMA Case  - Statistical MC

TAP 2016, Vienna, July 5, 2016 Kim Larsen [47]



TERMA Case – Conclusion

TAP 2016, Vienna, July 5, 2016 Kim Larsen [48]



Statistical Model Checking
of Stochastic Hybrid Systems

TAP 2016, Vienna, July 5, 2016 Kim Larsen [49]

FIREWIRE BLUETOOTH 10 node LMAC

Battery

Scheduling
Energy Aware

Buildings

Genetic Oscilator

(HBS)

Schedulability

Analysis for

Mix Cr Sys

Smart Grid

Demand /

Response

Cell Cycle 

Swithch

SMC



Overview

 Timed Automata / UPPAAL
 Verification

 Stochastic Priced Timed Automata / UPPAAL SMC
 Performance Evaluation

 SMC in a Nutshell

 Stochastic Hybrid Automata

 Timed Games / UPPAAL TIGA
 Controller Syntesis

 Stochastic Priced Timed Games / UPPAAL STRATEGO
 Optimal & Safe Synthesis

 Conclusion

TAP 2016, Vienna, July 5, 2016 Kim Larsen [50]

Train Gate

Floor Heating

Adaptive Cruise Control

Train Gate

Train Gate

Schedulability Analysis

Train Gate



Model Checking (ex Train Gate)
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: Never two trains at

the crossing at the

same time

Environment

Controller



Synthesis (ex Train Gate)
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: Never two trains at

the crossing at the

same time

Environment

Controller

?



Timed Games
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: Never two trains at

the crossing at the

same time

Controllable Uncontrollable

Synthesize strategy for controllable

actions st behaviour satisfies 

Controller

Environment



DEMO



Timed Games
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: Never two trains at

the crossing at the

same time

Controllable Uncontrollable

Find strategy for controllable

actions st behaviour satisfies 

Controller

Environment



Overview
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Train Gate

Floor Heating

Adaptive Cruise Control

Train Gate

Train Gate

Schedulability Analysis

Train Gate



Stochastic Timed Game
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G
Timed Game

σ
Strategy

P
Stochastic 

Priced
Timed Game

P|σ

φ

synthesis

abstraction

σ°
optimized
Strategy

G|σ
Timed Automata

P|σ°
Stochastic Priced 
Timed Automata

minE(cost)

maxE(gain)

Uppaal TIGA
strategy NS = control: A<> goal
strategy NS = control: A[] safe

Statistical Learning

strategy DS = minE (cost) [<=10]: <> done under NS
strategy DS = maxE (gain) [<=10]: <> done under NS

Uppaal
E<> error under NS
A[] safe under NS

Uppaal SMC
simulate 5 [<=10]{e1, e2} under SS 
Pr[<=10](<> error) under SS 
E[<=10;100](max: cost) under SS



DEMO



Reinforcement Learning
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Time Bounded Reachability
(G,T)

TIGA

SMC

SMC



Synthesis of
Safe & Adaptive Cruice Control

TAP 2016, Vienna, July 5, 2016 Kim Larsen [61]

Q1: Find a safety strategy for Ego such no crash will ever
occur no matter what Front is doing.

Q2: Find the most permissive strategy ensuring safety
Q3: Find the optimal sub-strategy that will allow Ego to go 

as far as possible (without overtaking).

EGO FRONT



Two Player Game (simplified)
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Front (complete)
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No Strategy

TAP 2016, Vienna, July 5, 2016 Kim Larsen [64]



Safety Strategy
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Safety Strategy (Code)
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Safety Strategy
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Optimal and Safe Strategy
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Synthesis of Climate Controllers
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TACAS16



Synthesis of Climate Controllers
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TACAS16

3 day scenario

Modified parameters (0-20%) 



Synthesis of Home Automation
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Industrial Applications 

TAP 2016, Vienna, July 5, 2016 Kim Larsen [72]

Skov

GOMSpace

HYDAC

SELUXIT

 Safe and optimal adaptive 
cruise control

 Zone-based climate
control pig-stables 

 Profit-optimal, energy-
aware schedules for 
satelittes

 Personalized light control
in home automation

 Energy- and comfort-
optimal floor heating

 Safe and energy optimal 
control of hydralic pumps



Conclusion & Future Work

 Strategies - Representation

 Non-determinstic strategies 𝜎(ℓ,𝑣)
𝑛 ⊆ Σ𝑐 ∪ 𝜆

 Stochastic strategies 𝜇(ℓ,𝑣)
𝑠 : Σ𝑐 ∪ 𝜆 → [0,1]

 Verification of learned strategy

 Better learning methods (Q-learning)

 Beyond safety objectives (MITL)

 Most (or maximal) permissive strategies

 Verification of discrete strategy for hybrid 
games

 Partial observability

TAP 2016, Vienna, July 5, 2016 Kim Larsen [73]



LASSO
Learning, Analysis, SynthesiS and Optimization

of Cyber-Physical Systems

 1…  

𝜇1…𝜇𝑛

Safety Constraints

Perf. Measures

Model of

Physical Comp.
Model of

Cyber Comp.

Unknown

Known

Learning

Analysis

Synthesize

Optimize

Fig 1. The LASSO Framework

Contact:  kgl@cs.aau.dk

Future Work

TAP 2016, Vienna, July 5, 2016 74



LASSO
Learning, Analysis, SynthesiS and Optimization

of Cyber-Physical Systems

Contact:  kgl@cs.aau.dkTAP 2016, Vienna, July 5, 2016

 METRICS

Future Work
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www.uppaal.org

TAP 2016, Vienna, July 5, 2016 Kim Larsen [76]


