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INTERNET OF THINGS TO

ENABLE SMART 

INFRASTRUCTURE
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Motivation
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The Aging Civil Infrastructure

America’s $20 trillion+ investment in civil infrastructure is in dire 
shape, and will continue to deteriorate if we fail to act.

Continuous monitoring and precision targeting of maintenance 
can improve safety and save billions of dollars for infrastructure 
owners.

American Society of Civil Engineers report card grades
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 Smart infrastructure can improve safety, facilitate smart 

transportation systems.

 Monitor infrastructure, pinpoint deficiencies. 

 Control: dampen vibrations to limit damage

 Scalable cyberphysical systems required.  

Sensor Clouds for Smart Infrastructure
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Infrastructure is aging.  

Estimated 70,000 structurally deficient bridges in US. 
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Keeping Tabs on the Infrastructure
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“… one highly intelligent bridge 
knows what to do when trouble 
arises: send an e-mail.”

“A small army of electronic sentinels… 

monitor the bridge’s structural health.  (As of 

last week, the bridge said it was just fine.)”

Illinois Structural Health Monitoring Project

See: http://shm.cs.illiniois.edu 

6



July 6, 2016 Gul Agha, University of  Illinois

Dense Sensor Clouds for Smart Structures
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xnode : Environmentally Hardened Enclosure

Connection to

External Analog 

Sensors

Connection to 

Energy 

Harvester/USB 

IP66 Waterproof Enclosure

Magnet

LED Indicator
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A calibrated model and strategically 
placed smart sensors allow for the 
force in all structural members to be 
determined with high accuracy and 
remaining service life to be 
estimated.  Checkout the video at: 
http://embedortech.com
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Example: National Smart Structures Grid

Highway

Bridge

Dam

Railroad

Cut slope

Tunnel

Cloud Data Repository
Data

Control

Cloud Network
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MODELS OF CONCURRENCY
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Models of Concurrency

 Petri Nets

 Process Algebras

 Actors
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 Efficiency

 Distribution 

 Concurrency

 Scalability

 Stability and Robustness

Programming Scalable Applications
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Scalable Applications

 Martian Rover (1990s)

 Twitter's message queuing

 LiftWeb Framework (Scala for web 

applications)

 Image processing in MS Visual Studio 

2010

 Vendatta game engine (Erlang)

 Facebook Chat System (Erlang)

 LinkedIn

 Microsoft Orleans: used by >343 industries, 

platform for all of Halo 4 cloud services
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33 to 49 minutes for radio waves to 

travel from Jupiter to Earth
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Concurrency

``When people read about Scala, it's almost always in the 

context of concurrency. Concurrency can be solved by a good 

programmer in many  languages, but it's a tough problem to 

solve. Scala has an Actor library that is commonly used to 

solve concurrency problems, and it makes that problem a lot 

easier to solve.'' 

--Alex Payne, ``How and Why Twitter Uses Scala”  
http://blog.redfin.com/devblog/2010/05/how_and_why_twitter_uses_scala.html

(emphasis added)
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Stability and Scalability

“..the actor model has worked really well for us, and we 

wouldn't have been able to pull that off in C++ or Java. 

Several of us are big fans of Python and I personally like 

Haskell for a lot of tasks, but the bottom line is that, while 

those languages are great general purpose languages, 

none of them were designed with the actor model at 

heart.”

--Facebook Engineering 

https://www.facebook.com/notes/facebook-engineering/chat-stability-and-scalability/51412338919
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Actor Languages and Frameworks

 Erlang

 E

 Axum

 Stackless Python

 Theron (C++)

 RevActor (Ruby)

 Dart 

 Asynchronous Agents Library

 Scala Actors/Akka

 ActorFoundry

 SALSA

 Kilim

 Jetlang

 Actor’s Guild

 Clojure

 … a growing list
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Characteristics of the Actor Model

Computation broken into autonomous, concurrent 

agents called actors:

 Actors do not share state

 Analogous to animals in natural systems.

 Each actor operates asynchronously

 The rate at which an actor operates may vary. 

 An actor is like a virtual processor.

 An actor may interact with other actors.

[Actors: A Model of Concurrent Computation in Distributed Systems," Gul Agha. MIT Press, 1986.]
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Message-Passing

 There is no action at a distance

 An actor a1 an only affect a2 by sending it a message.

 Messages are asynchronous

a1

a2
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Distribution and Parallelism

 Each actors represents a point in a 

virtual space.

 Events at an actor are ordered linearly.

 Events may change the state of an 

actor

 An event on one actor may activate an 

event on another by sending a 

message (causal order).

 Transitive closure results in a partial 

order

a1

e1

e3

a2

e'1

e'2

e2

time
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Fairness

 Each actor makes progress if it can:

 If multiple actors execute on a single processor, each actor is 

scheduled. 

 Every messages is eventually delivered if it can be: 

 When an actor is idle and has a pending message, it processes 

that message. 

 Multiple pending messages are processed in an order so none is 

permanently ignored by the target actor.  
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Actor Names

 The name (mail address) of each actor is unique and 

cannot be guessed. 

 An actor must know the name (mail address) of the target 

actor to send it a message

 Called the locality property of actors. 

 Locality property provides a built in capability architecture 

for security.
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Actor Topology

 If an actor a1 knows the address of another actor a2 , a1 may 

communicate the name of an a2 in a message. 

 The interconnection topology of actors is dynamic. 

 Supports mobility and reconfiguration of actors. 
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Actor Creation

New actors may be created: 

 Increases the available concurrency in a computation.

 Facilitates dynamic parallelism for load balancing.

 Enables mechanisms for fault-tolerance.
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Actor anatomy: Actors and Threads

Actors = encapsulated state + behavior + 

independent control + mailbox
Object
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The Actor Model: 

Runtime Support

Thread
State

Procedure

Thread
State

Procedure

Thread
State

Procedure

Interface

Send 

Messages

Thread
State

Procedure

Interface

Create

Receive

Messages
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Defining an actor language

Start with a sequential object-based language or 
framework, add concurrency to objects, operators for: 

 actor creation

 create(class, params)

 Locally or at remote nodes

 message sending

 send(actor, method, params)

 state change 

 ready to process next message
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Message Patterns

 More complex message 

patterns may be 

defined in terms of 

asynchronous 

messages: 

a1 a2

e1

e2

e3

rpc like messaging

Actor Event Diagrams
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Actor Encapsulation: State Isolation

 Recall: no shared state between actors

 ‘Access’ another actor’s state only by sending it a message 

and requesting it: 

 Messages have send-by-value semantics

 Implementation may be relaxed on shared memory platforms, if 

“safe”
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Location Transparent Naming

 Enables automatic load-balancing and fault-tolerance 

mechanisms

 Run-time can exploit resources available on cluster, grid or 

scalable multicores (distributed memory)

 Uniform model for multicore and distributed programming
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Synchronization and Coordination

 Essential for correct functioning of actor 

systems

 A source of complexity in concurrent programs
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Synchronizing in a Concurrent World

 The interface of an actor may be dynamic: 
 Cannot get from an empty buffer

 Cannot put into a full buffer

Producer

Buffer

Consumer

put

get
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Separation of Concerns

 Abstract Data Types:

 Enable separation of interface (what) from the representation (how).

 Actors:

 When actions happen is underspecified (asynchrony). 

 Recipient may not be ready to process a message when it arrives –
synchronization constraints (when). 

 Separate specification of when from how to facilitate modularity in 
code. 

July 6, 2016 Gul Agha, University of  Illinois 33



Local Synchronization Constraints

 Constrain the “local” order of processing messages

 Delay or reject out of order messages

 Function of local state and message contents

 These have delay semantics i.e. disabled messages are 
buffered

 Implementations: Disabling constraints in AF, Pattern 
matching in Erlang, Scala
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Expressing Local Synchronization Constraints 
(Abstractly)

 Per actor logical rules which determine the legality of 
invocations: 

 disable get when empty? (buffer)

Producer

Buffer

Consumer

put

get
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Implementation of Local Synchronization Constraints

Mail Queue

Synchronization

Constraints

Controller
Data and Methods

Incoming 

Messages

Pending 

queue

Actor
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Scalable Reasoning Tools

 Computational Learning for Verification

 Concolic Testing and its variants 

 Runtime verification (Monitoring)

 Inferring interfaces: session types, concurrency structure

 Computational learning for verification (won’t discuss today)

Quantitative Tools:

 Statistical Model Checking

 Euclidean Model Checking
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Execution Paths of a Program
 Can be seen as a binary tree with 

possibly infinite depth

 Computation tree

 Each node represents the execution of 

a “if then else” statement

 Each edge represents the execution of 

a sequence of non-conditional 

statements

 Each path in the tree represents an 

equivalence class of inputs.

 What about loops?

 Unroll to finite depth.

F T

F F

F

F

T

T

T

T

T

T
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What is Testing?

 Execute the program and observe how it behaves under 

different scenarios:

 Vary the inputs.

 In concurrent programs: vary the schedules.
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Goal

 Automated Scalable Unit Testing of real-world sequential 

programs

 Generate test inputs

 Execute unit under test on generated test inputs

 so that all reachable statements are executed

 Any assertion violation gets caught
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What is a bug?

 Traverse all execution 

paths one by one to detect 

errors

 assertion violations

 program crash

 uncaught exceptions

 combine with valgrind to 

discover memory errors

F T

F F

F

F

T

T

T

T

T

T
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Example of Computation Tree

void test_me(int x, int y) {

if(2*x==y){

if(x != y+10){

printf(“I am fine here”);

} else {

printf(“I should not reach here”);

ERROR;

}

}

}

2*x==y

x!=y+10

N Y

N Y

ERROR
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Random Testing

 generate random inputs

 execute the program on 

generated inputs

 Probability of reaching an error 

can be astronomically less

test_me(int x){

if(x==94389){

ERROR;

}

}

Probability of hitting ERROR = 

1/232
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Symbolic Execution

 use symbolic values for input 
variables

 execute the program 
symbolically on symbolic input 
values

 collect symbolic path constraints

 use theorem prover to check if a 
branch can be taken

test_me(int x){

if (x==94389){

ERROR;

}

}
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Symbolic Execution

 What if we can solve the 
constraint?

 Symbolic execution will say both 
branches are reachable: 

False positive

 Does not scale for large 
programs

test_me(int x){

if((x%10)*4!=17){

ERROR;

} else {

ERROR;

} 

}
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Approach

 Combine concrete and symbolic execution for unit testing

 Concrete + Symbolic = Concolic

 In a nutshell

 Use concrete execution over a concrete input to guide symbolic execution

 Concrete execution helps Symbolic execution to simplify complex and 

unmanageable symbolic expressions

 by replacing symbolic values by concrete values

 Achieves Scalability

 Higher branch coverage than random testing

 No false positives or scalability issue like in symbolic execution based testing
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Example: Simultaneous Concrete and Symbolic Execution

int foo (int v) { 

return (v*v) % 50; 

}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concrete 

Execution

Symbolic 

Execution

concrete 

state

symbolic 

state

path 
condition

x = 22, y = 7 x = x0, y = y0
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int foo (int v) { 

return (v*v) % 50; 

}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concrete 

Execution

Symbolic 

Execution

concrete 

state

symbolic 

state

path 
condition

x = 22, y = 7,    

z = 49

x = x0, y = y0,  

z = (y0 *y0)%50

(y0*y0)%50 !=x0

Solve: (y0*y0 )%50 == x0

Don’t know how to solve! 

Stuck?

Example : Simultaneous Concrete and Symbolic Execution
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void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concrete 

Execution

Symbolic 

Execution

concrete 

state

symbolic 

state

path 
condition

x = 22, y = 7,    

z = 49

x = x0, y = y0,  

z = foo (y0)

foo (y0) !=x0

Example : Simultaneous Concrete and Symbolic Execution

Solve: foo (y0) == x0

Don’t know how to solve! 

Stuck?
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int foo (int v) { 

return (v*v) % 50; 

}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concrete 

Execution

Symbolic 

Execution

concrete 

state

symbolic 

state

path 
condition

x = 22, y = 7,    

z = 49

x = x0, y = y0,  

z = (y0 *y0)%50

(y0*y0)%50 !=x0

Solve: (y0*y0 )%50 == x0

Don’t know how to solve! 

Not Stuck!

Use concrete state

Replace y0 by 7 (sound)

Example : Simultaneous Concrete and Symbolic Execution
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int foo (int v) { 

return (v*v) % 50; 

}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concrete 

Execution

Symbolic 

Execution

concrete 

state

symbolic 

state

path 
condition

x = 22, y = 7,    

z = 48

x = x0, y = y0,  

z = 49

49 !=x0

Solve: 49 == x0

Solution : x0 = 49, y0 = 7

Example : Simultaneous Concrete and Symbolic Execution
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int foo (int v) { 

return (v*v) % 50; 

}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concrete 

Execution

Symbolic 

Execution

concrete 

state

symbolic 

state

path 
condition

x = 49, y = 7 x = x0, y = y0

Example : Simultaneous Concrete and Symbolic Execution
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int foo (int v) { 

return (v*v) % 50; 

}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concrete 

Execution

Symbolic 

Execution

concrete 

state

symbolic 

state

path 
condition

x = 49, y = 7,    

z = 49

x = x0, y = y0 ,

z = 49  

2*y0 == x0

x0 > y0+10

Program Error

Example : Simultaneous Concrete and Symbolic Execution
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Concolic Testing in a Nutshell

 Use Concolic
Execution to Generate
 Data input

 Use generated data 
input to

 Execute program both 
concretely and 
symbolically (concolically)

 Use symbolic 

execution to
 To generate data input

 Use concrete execution to Guide 

symbolic execution

 Use smart search strategies: e.g. 

Concolic Walk in space defined by 

constraints
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 Schedules are another branching condition

 Partial order reduction helps

 Multistep Semantics for Actors

 Still too many interleavings..

 Use backward symbolic execution

 Branch coverage is an uninteresting metric

 Unchecked conditions

 Runtime Verification

Concolic Execution for Concurrent Programs
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Decentralized Runtime Verification

 Properties expressed with respect to an actor (Epistemic 
Logic)

 Properties are in Distributed Temporal Logic

 Decentralize Monitoring

 Maintain knowledge of relevant state at each process

 Update knowledge with incoming messages

 Attach knowledge with outgoing messages

 At each actor check safety property against local knowledge
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Decentralized Monitoring Example

“If a receives a value from b then b calculated the value after receiving 
request from a” valRcv → @b((valComputed  @a(valReq)))

valReq

valComputed

valRcv
a

b

valReq
valRcv → @b((valComputed  @a(valReq)))

(valComputed  @a(valReq))@a(valReq)

valComputed  @a(valReq)
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KnowledgeVector

Let KV be a vector.  KV is a knowledge vector if it has: 

 one entry for each process appearing in formula

 KV[j] denotes entry for actor j

 KV[j].seq is the sequence number of last event seen at actor j

 KV[j].values stores values of j-expressions and j-formulae
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Example

p3

p2

p1
X=6 X=4 X=4

Y=7 Y=5

0

_

0

_

0

6

1

6

1

4

2

4

2

4

2

4

2

4

2

4

2

4

✓

⊡(Y ≥ @1X) at p2

KV[1].seq

KV[1].values

Y=5

0

_

2

4

Y=5

✓
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Example: Another Potential Execution

p3

p2

p1

X=5
X=6

X=4

Y=7 Y=5

0

-

0

-

0

5

0

6

1

6

1

4

2

4

2

4

2

4

1

6

1

6

2

4

✕

⊡(Y ≥ @1X) at p2

KV[1].seq

KV[1].values

Y=5

0

_
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Predictive Monitoring

 Can predict the violation from the run that did not have the 

violation.

 Cannot detect a violation if there is no direct communication 

of intermediate value from p1 to p2 
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DIANA Architecture

pt-DTL

Monitor
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Causality Cone 

Heuristics
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Probabilistic Programs

 An actor program is a 

probabilistic program in a 

distributed space with 

concurrent time.

 The behavior of a program is 

statistical in nature. 

t

P

Q

R

T

Past causality 

Future causality

y

x

S

U

Not causally 

connected
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Properties in CSL sub-logic

  ::= true | a |  ⋀  | :  | PQ p()

  ::=  U<t  | X 
where Q 2 {<,>,¸,·}

 P< 0.5(◊
<10 full)

 Probability that queue becomes full in 10 units of time is less than 0.5

 P>0.98(: retransmit U<200 receive)

 Probability that a message is received successfully within 200 time 
units without any need for retransmission is greater than 0.98 
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Statistical Model Checking

Model or Implementation

No: 

Model-Checker

Yes: 

Don’t Know

•Decoupled from the tool

• Run implementation to 

generate samples, or

• Get Samples from Monte-

Carlo simulation of model

Property
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Checking P<0.6(p U<12 q) statistically at s

 On 21 paths (p U<12 q) is satisfied 

 21/30 > 0.6
 can we say that  P<0.6(p U<12 q) is violated 

at s ??

 Statistically, yes, provided we quantify the 
error in our decision 

 error = 

= Pr[On 21 (or more) out of 30 paths (p U<12 q)  hold   

| probability that (p U<12 q) holds on a path is less 

than 0.6]

· Pr[X ¸ 21 ] where X~Binomial(30,0.6)

Sample contains, say, 30 

paths from s

…….

p U<12 q
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Error (p-value)

 Let r = (# of paths on which (p U<12 q) hold / # of total paths)

 Let p = Pr[(p U<12 q) holds on a path]

 “no” answer : (formula violates)

 “yes” answer : (formula holds)

0.0 1.010/30 0.6

pr

0.0 1.0
21/30

0.6

rp error = Pr[r ≥ 21/30 | p ≤ 0.6]

error = Pr[r ≤ 10/30 | p > 0.6]
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Nested: Checking P<0.6(1U
<122) at s 

• 1 and 2 contain nested probabilistic operators

 Checking (1 U<12 2) over a path

 Answers are not simply “yes” or “no”

 Answers can be

 “yes” with error 

 “no” with error 

 “don’t know”

 Need a modified decision procedure

 Handle “don’t know” to get useful answers

 Incorporate error of decision for sub-formulas
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July 6, 2016

Checking P<0.6(1U
<122) at s (Problem)

Solution

1. Resolve “don’t know” (?) in 
adversarial fashion

 Observation region

2. Create “uncertainty region”
to incorporate error 
associated with sub-
formulas.

…….

1 U<12 2

?
1 32

?
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Evolving Systems 

 Big data applications require 

approximate answers in a real-time. 

 Probabilistic actor-based programming

 Adaptive programs:

 Use predictive distributed monitoring and 

statistical inference.

 Learning and prediction using Bayesian 

methods

time

p
ro

b
a
b
ili

ty

approximation
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 100 nodes, 5 Abstract States  5100  potential states

 Interested in aggregate properties or expected values

 Model state as pmf vector (superposition of probabilities)

Representing State
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 Transitions may be governed by a Markov model

 pmf vector defines the initial state for a DTMC

 Search in an Euclidean space

 Property stabilizes after a computable depth

 Model checking reduced to linear algebra

 Euclidean Model Checking

Evolution of Probability Distributions
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 Programming based on the Actor Model facilitates 

scalable, secure development of concurrent 

programs. 

 Probabilistic programming methods needed

 New reasoning methods needed: 

 Scalable

 Model probabilistic computation 

 Address quantitative properties

Conclusions
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