
Abstractions, Semantic Models and

Analysis Tools for Concurrent

Systems: Progress and Open Problems

Gul Agha

University of Illinois at Urbana-Champaign

Embedor Technologies

http://osl.cs.uiuc.edu

Acknowledgements

 Work reported here is joint with Carl Hewitt, Chris Houck,

WooYoung Kim, Pohao Chang, Rajesh Karmani, Mark Astley,

Dan Sturman, Stas Negara, Rajendra Panwar, Svend Frolund,

Reza Shiftehfar, Koushik Sen among others.

 Supported in part by AFOSR/AFRL Air Force Research

Laboratory and the Air Force Office of Scientific Research under

agreement FA8750-11-2-0084 for the Assured Cloud Computing

at the University of Illinois at Urbana-Champaign, and by the

National Science Foundation under grant NSF CCF 14-38982 and

NSF CCF 16-17401.

July 6, 2016 Gul Agha, University of Illinois 2

INTERNET OF THINGS TO

ENABLE SMART

INFRASTRUCTURE

July 6, 2016 Gul Agha, University of Illinois

Motivation

3

The Aging Civil Infrastructure

America’s $20 trillion+ investment in civil infrastructure is in dire
shape, and will continue to deteriorate if we fail to act.

Continuous monitoring and precision targeting of maintenance
can improve safety and save billions of dollars for infrastructure
owners.

American Society of Civil Engineers report card grades

July 6, 2016 Gul Agha, University of Illinois 4

 Smart infrastructure can improve safety, facilitate smart

transportation systems.

 Monitor infrastructure, pinpoint deficiencies.

 Control: dampen vibrations to limit damage

 Scalable cyberphysical systems required.

Sensor Clouds for Smart Infrastructure

July 6, 2016 Gul Agha, University of Illinois

Infrastructure is aging.

Estimated 70,000 structurally deficient bridges in US.

5

Keeping Tabs on the Infrastructure

July 6, 2016 Gul Agha, University of Illinois

“… one highly intelligent bridge
knows what to do when trouble
arises: send an e-mail.”

“A small army of electronic sentinels…

monitor the bridge’s structural health. (As of

last week, the bridge said it was just fine.)”

Illinois Structural Health Monitoring Project

See: http://shm.cs.illiniois.edu

6

July 6, 2016 Gul Agha, University of Illinois

Dense Sensor Clouds for Smart Structures

7

xnode : Environmentally Hardened Enclosure

Connection to

External Analog

Sensors

Connection to

Energy

Harvester/USB

IP66 Waterproof Enclosure

Magnet

LED Indicator

July 6, 2016 Gul Agha, University of Illinois 8

A calibrated model and strategically
placed smart sensors allow for the
force in all structural members to be
determined with high accuracy and
remaining service life to be
estimated. Checkout the video at:
http://embedortech.com

July 6, 2016 Gul Agha, University of Illinois 9

http://embedortech.com/

Example: National Smart Structures Grid

Highway

Bridge

Dam

Railroad

Cut slope

Tunnel

Cloud Data Repository
Data

Control

Cloud Network

10

http://www.illinois.edu/

MODELS OF CONCURRENCY

July 6, 2016 Gul Agha, University of Illinois 11

Models of Concurrency

 Petri Nets

 Process Algebras

 Actors

July 6, 2016 Gul Agha, University of Illinois 12

 Efficiency

 Distribution

 Concurrency

 Scalability

 Stability and Robustness

Programming Scalable Applications

July 6, 2016 Gul Agha, University of Illinois 13

Scalable Applications

 Martian Rover (1990s)

 Twitter's message queuing

 LiftWeb Framework (Scala for web

applications)

 Image processing in MS Visual Studio

2010

 Vendatta game engine (Erlang)

 Facebook Chat System (Erlang)

 LinkedIn

 Microsoft Orleans: used by >343 industries,

platform for all of Halo 4 cloud services

July 6, 2016 Gul Agha, University of Illinois

33 to 49 minutes for radio waves to

travel from Jupiter to Earth

14

Concurrency

``When people read about Scala, it's almost always in the

context of concurrency. Concurrency can be solved by a good

programmer in many languages, but it's a tough problem to

solve. Scala has an Actor library that is commonly used to

solve concurrency problems, and it makes that problem a lot

easier to solve.''

--Alex Payne, ``How and Why Twitter Uses Scala”
http://blog.redfin.com/devblog/2010/05/how_and_why_twitter_uses_scala.html

(emphasis added)

July 6, 2016 Gul Agha, University of Illinois 15

http://blog.redfin.com/devblog/2010/05/how_and_why_twitter_uses_scala.html

Stability and Scalability

“..the actor model has worked really well for us, and we

wouldn't have been able to pull that off in C++ or Java.

Several of us are big fans of Python and I personally like

Haskell for a lot of tasks, but the bottom line is that, while

those languages are great general purpose languages,

none of them were designed with the actor model at

heart.”

--Facebook Engineering

https://www.facebook.com/notes/facebook-engineering/chat-stability-and-scalability/51412338919

July 6, 2016 Gul Agha, University of Illinois 16

Actor Languages and Frameworks

 Erlang

 E

 Axum

 Stackless Python

 Theron (C++)

 RevActor (Ruby)

 Dart

 Asynchronous Agents Library

 Scala Actors/Akka

 ActorFoundry

 SALSA

 Kilim

 Jetlang

 Actor’s Guild

 Clojure

 … a growing list

July 6, 2016 Gul Agha, University of Illinois 17

Characteristics of the Actor Model

Computation broken into autonomous, concurrent

agents called actors:

 Actors do not share state

 Analogous to animals in natural systems.

 Each actor operates asynchronously

 The rate at which an actor operates may vary.

 An actor is like a virtual processor.

 An actor may interact with other actors.

[Actors: A Model of Concurrent Computation in Distributed Systems," Gul Agha. MIT Press, 1986.]

July 6, 2016 Gul Agha, University of Illinois 18

Message-Passing

 There is no action at a distance

 An actor a1 an only affect a2 by sending it a message.

 Messages are asynchronous

a1

a2

July 6, 2016 Gul Agha, University of Illinois 19

Distribution and Parallelism

 Each actors represents a point in a

virtual space.

 Events at an actor are ordered linearly.

 Events may change the state of an

actor

 An event on one actor may activate an

event on another by sending a

message (causal order).

 Transitive closure results in a partial

order

a1

e1

e3

a2

e'1

e'2

e2

time

July 6, 2016 Gul Agha, University of Illinois 20

Fairness

 Each actor makes progress if it can:

 If multiple actors execute on a single processor, each actor is

scheduled.

 Every messages is eventually delivered if it can be:

 When an actor is idle and has a pending message, it processes

that message.

 Multiple pending messages are processed in an order so none is

permanently ignored by the target actor.

July 6, 2016 Gul Agha, University of Illinois 21

Actor Names

 The name (mail address) of each actor is unique and

cannot be guessed.

 An actor must know the name (mail address) of the target

actor to send it a message

 Called the locality property of actors.

 Locality property provides a built in capability architecture

for security.

July 6, 2016 Gul Agha, University of Illinois 22

Actor Topology

 If an actor a1 knows the address of another actor a2 , a1 may

communicate the name of an a2 in a message.

 The interconnection topology of actors is dynamic.

 Supports mobility and reconfiguration of actors.

July 6, 2016 Gul Agha, University of Illinois 23

Actor Creation

New actors may be created:

 Increases the available concurrency in a computation.

 Facilitates dynamic parallelism for load balancing.

 Enables mechanisms for fault-tolerance.

July 6, 2016 Gul Agha, University of Illinois 24

Actor anatomy: Actors and Threads

Actors = encapsulated state + behavior +

independent control + mailbox
Object

July 6, 2016 Gul Agha, University of Illinois 25

July 6, 2016 Gul Agha, University of Illinois

The Actor Model:

Runtime Support

Thread
State

Procedure

Thread
State

Procedure

Thread
State

Procedure

Interface

Send

Messages

Thread
State

Procedure

Interface

Create

Receive

Messages

26

Defining an actor language

Start with a sequential object-based language or
framework, add concurrency to objects, operators for:

 actor creation

 create(class, params)

 Locally or at remote nodes

 message sending

 send(actor, method, params)

 state change

 ready to process next message

July 6, 2016 Gul Agha, University of Illinois 27

Message Patterns

 More complex message

patterns may be

defined in terms of

asynchronous

messages:

a1 a2

e1

e2

e3

rpc like messaging

Actor Event Diagrams

July 6, 2016 Gul Agha, University of Illinois 28

Actor Encapsulation: State Isolation

 Recall: no shared state between actors

 ‘Access’ another actor’s state only by sending it a message

and requesting it:

 Messages have send-by-value semantics

 Implementation may be relaxed on shared memory platforms, if

“safe”

July 6, 2016 Gul Agha, University of Illinois 29

Location Transparent Naming

 Enables automatic load-balancing and fault-tolerance

mechanisms

 Run-time can exploit resources available on cluster, grid or

scalable multicores (distributed memory)

 Uniform model for multicore and distributed programming

July 6, 2016 Gul Agha, University of Illinois 30

Synchronization and Coordination

 Essential for correct functioning of actor

systems

 A source of complexity in concurrent programs

July 6, 2016 Gul Agha, University of Illinois 31

Synchronizing in a Concurrent World

 The interface of an actor may be dynamic:
 Cannot get from an empty buffer

 Cannot put into a full buffer

Producer

Buffer

Consumer

put

get

July 6, 2016 Gul Agha, University of Illinois 32

Separation of Concerns

 Abstract Data Types:

 Enable separation of interface (what) from the representation (how).

 Actors:

 When actions happen is underspecified (asynchrony).

 Recipient may not be ready to process a message when it arrives –
synchronization constraints (when).

 Separate specification of when from how to facilitate modularity in
code.

July 6, 2016 Gul Agha, University of Illinois 33

Local Synchronization Constraints

 Constrain the “local” order of processing messages

 Delay or reject out of order messages

 Function of local state and message contents

 These have delay semantics i.e. disabled messages are
buffered

 Implementations: Disabling constraints in AF, Pattern
matching in Erlang, Scala

July 6, 2016 Gul Agha, University of Illinois 34

Expressing Local Synchronization Constraints
(Abstractly)

 Per actor logical rules which determine the legality of
invocations:

 disable get when empty? (buffer)

Producer

Buffer

Consumer

put

get

July 6, 2016 Gul Agha, University of Illinois 35

Implementation of Local Synchronization Constraints

Mail Queue

Synchronization

Constraints

Controller
Data and Methods

Incoming

Messages

Pending

queue

Actor

July 6, 2016 Gul Agha, University of Illinois 36

Scalable Reasoning Tools

 Computational Learning for Verification

 Concolic Testing and its variants

 Runtime verification (Monitoring)

 Inferring interfaces: session types, concurrency structure

 Computational learning for verification (won’t discuss today)

Quantitative Tools:

 Statistical Model Checking

 Euclidean Model Checking

July 6, 2016 Gul Agha, University of Illinois 37

Execution Paths of a Program
 Can be seen as a binary tree with

possibly infinite depth

 Computation tree

 Each node represents the execution of

a “if then else” statement

 Each edge represents the execution of

a sequence of non-conditional

statements

 Each path in the tree represents an

equivalence class of inputs.

 What about loops?

 Unroll to finite depth.

F T

F F

F

F

T

T

T

T

T

T

38

What is Testing?

 Execute the program and observe how it behaves under

different scenarios:

 Vary the inputs.

 In concurrent programs: vary the schedules.

July 6, 2016 Gul Agha, University of Illinois 39

Goal

 Automated Scalable Unit Testing of real-world sequential

programs

 Generate test inputs

 Execute unit under test on generated test inputs

 so that all reachable statements are executed

 Any assertion violation gets caught

July 6, 2016 Gul Agha, University of Illinois 40

What is a bug?

 Traverse all execution

paths one by one to detect

errors

 assertion violations

 program crash

 uncaught exceptions

 combine with valgrind to

discover memory errors

F T

F F

F

F

T

T

T

T

T

T

July 6, 2016 Gul Agha, University of Illinois 41

Example of Computation Tree

void test_me(int x, int y) {

if(2*x==y){

if(x != y+10){

printf(“I am fine here”);

} else {

printf(“I should not reach here”);

ERROR;

}

}

}

2*x==y

x!=y+10

N Y

N Y

ERROR

July 6, 2016 Gul Agha, University of Illinois 42

Random Testing

 generate random inputs

 execute the program on

generated inputs

 Probability of reaching an error

can be astronomically less

test_me(int x){

if(x==94389){

ERROR;

}

}

Probability of hitting ERROR =

1/232

July 6, 2016 Gul Agha, University of Illinois 43

Symbolic Execution

 use symbolic values for input
variables

 execute the program
symbolically on symbolic input
values

 collect symbolic path constraints

 use theorem prover to check if a
branch can be taken

test_me(int x){

if (x==94389){

ERROR;

}

}

July 6, 2016 Gul Agha, University of Illinois 44

Symbolic Execution

 What if we can solve the
constraint?

 Symbolic execution will say both
branches are reachable:

False positive

 Does not scale for large
programs

test_me(int x){

if((x%10)*4!=17){

ERROR;

} else {

ERROR;

}

}

July 6, 2016 Gul Agha, University of Illinois 45

Approach

 Combine concrete and symbolic execution for unit testing

 Concrete + Symbolic = Concolic

 In a nutshell

 Use concrete execution over a concrete input to guide symbolic execution

 Concrete execution helps Symbolic execution to simplify complex and

unmanageable symbolic expressions

 by replacing symbolic values by concrete values

 Achieves Scalability

 Higher branch coverage than random testing

 No false positives or scalability issue like in symbolic execution based testing

July 6, 2016 Gul Agha, University of Illinois 46

Example: Simultaneous Concrete and Symbolic Execution

int foo (int v) {

return (v*v) % 50;

}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concrete

Execution

Symbolic

Execution

concrete

state

symbolic

state

path
condition

x = 22, y = 7 x = x0, y = y0

July 6, 2016 Gul Agha, University of Illinois 47

int foo (int v) {

return (v*v) % 50;

}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concrete

Execution

Symbolic

Execution

concrete

state

symbolic

state

path
condition

x = 22, y = 7,

z = 49

x = x0, y = y0,

z = (y0 *y0)%50

(y0*y0)%50 !=x0

Solve: (y0*y0)%50 == x0

Don’t know how to solve!

Stuck?

Example : Simultaneous Concrete and Symbolic Execution

July 6, 2016 Gul Agha, University of Illinois 48

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concrete

Execution

Symbolic

Execution

concrete

state

symbolic

state

path
condition

x = 22, y = 7,

z = 49

x = x0, y = y0,

z = foo (y0)

foo (y0) !=x0

Example : Simultaneous Concrete and Symbolic Execution

Solve: foo (y0) == x0

Don’t know how to solve!

Stuck?

July 6, 2016 Gul Agha, University of Illinois 49

int foo (int v) {

return (v*v) % 50;

}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concrete

Execution

Symbolic

Execution

concrete

state

symbolic

state

path
condition

x = 22, y = 7,

z = 49

x = x0, y = y0,

z = (y0 *y0)%50

(y0*y0)%50 !=x0

Solve: (y0*y0)%50 == x0

Don’t know how to solve!

Not Stuck!

Use concrete state

Replace y0 by 7 (sound)

Example : Simultaneous Concrete and Symbolic Execution

July 6, 2016 Gul Agha, University of Illinois 50

int foo (int v) {

return (v*v) % 50;

}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concrete

Execution

Symbolic

Execution

concrete

state

symbolic

state

path
condition

x = 22, y = 7,

z = 48

x = x0, y = y0,

z = 49

49 !=x0

Solve: 49 == x0

Solution : x0 = 49, y0 = 7

Example : Simultaneous Concrete and Symbolic Execution

July 6, 2016 Gul Agha, University of Illinois 51

int foo (int v) {

return (v*v) % 50;

}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concrete

Execution

Symbolic

Execution

concrete

state

symbolic

state

path
condition

x = 49, y = 7 x = x0, y = y0

Example : Simultaneous Concrete and Symbolic Execution

July 6, 2016 Gul Agha, University of Illinois 52

int foo (int v) {

return (v*v) % 50;

}

void testme (int x, int y) {

z = foo (y);

if (z == x) {

if (x > y+10) {

ERROR;

}

}

}

Concrete

Execution

Symbolic

Execution

concrete

state

symbolic

state

path
condition

x = 49, y = 7,

z = 49

x = x0, y = y0 ,

z = 49

2*y0 == x0

x0 > y0+10

Program Error

Example : Simultaneous Concrete and Symbolic Execution

July 6, 2016 Gul Agha, University of Illinois 53

Concolic Testing in a Nutshell

 Use Concolic
Execution to Generate
 Data input

 Use generated data
input to

 Execute program both
concretely and
symbolically (concolically)

 Use symbolic

execution to
 To generate data input

 Use concrete execution to Guide

symbolic execution

 Use smart search strategies: e.g.

Concolic Walk in space defined by

constraints

July 6, 2016 Gul Agha, University of Illinois 54

 Schedules are another branching condition

 Partial order reduction helps

 Multistep Semantics for Actors

 Still too many interleavings..

 Use backward symbolic execution

 Branch coverage is an uninteresting metric

 Unchecked conditions

 Runtime Verification

Concolic Execution for Concurrent Programs

July 6, 2016 Gul Agha, University of Illinois 55

July 6, 2016

Decentralized Runtime Verification

 Properties expressed with respect to an actor (Epistemic
Logic)

 Properties are in Distributed Temporal Logic

 Decentralize Monitoring

 Maintain knowledge of relevant state at each process

 Update knowledge with incoming messages

 Attach knowledge with outgoing messages

 At each actor check safety property against local knowledge

Gul Agha, University of Illinois 56

July 6, 2016

Decentralized Monitoring Example

“If a receives a value from b then b calculated the value after receiving
request from a” valRcv → @b((valComputed  @a(valReq)))

valReq

valComputed

valRcv
a

b

valReq
valRcv → @b((valComputed  @a(valReq)))

(valComputed  @a(valReq))@a(valReq)

valComputed  @a(valReq)

Gul Agha, University of Illinois 57

July 6, 2016

KnowledgeVector

Let KV be a vector. KV is a knowledge vector if it has:

 one entry for each process appearing in formula

 KV[j] denotes entry for actor j

 KV[j].seq is the sequence number of last event seen at actor j

 KV[j].values stores values of j-expressions and j-formulae

Gul Agha, University of Illinois 58

July 6, 2016

Example

p3

p2

p1
X=6 X=4 X=4

Y=7 Y=5

0

_

0

_

0

6

1

6

1

4

2

4

2

4

2

4

2

4

2

4

2

4

✓

⊡(Y ≥ @1X) at p2

KV[1].seq

KV[1].values

Y=5

0

_

2

4

Y=5

✓

Gul Agha, University of Illinois 59

July 6, 2016

Example: Another Potential Execution

p3

p2

p1

X=5
X=6

X=4

Y=7 Y=5

0

-

0

-

0

5

0

6

1

6

1

4

2

4

2

4

2

4

1

6

1

6

2

4

✕

⊡(Y ≥ @1X) at p2

KV[1].seq

KV[1].values

Y=5

0

_

Gul Agha, University of Illinois

60

Predictive Monitoring

 Can predict the violation from the run that did not have the

violation.

 Cannot detect a violation if there is no direct communication

of intermediate value from p1 to p2

July 6, 2016 Gul Agha, University of Illinois 61

July 6, 2016

DIANA Architecture

pt-DTL

Monitor

Gul Agha, University of Illinois 62

July 6, 2016

Causality Cone

Heuristics

Gul Agha, University of Illinois 63

Probabilistic Programs

 An actor program is a

probabilistic program in a

distributed space with

concurrent time.

 The behavior of a program is

statistical in nature.

t

P

Q

R

T

Past causality

Future causality

y

x

S

U

Not causally

connected

July 6, 2016 Gul Agha, University of Illinois 64

July 6, 2016

Properties in CSL sub-logic

  ::= true | a |  ⋀  | :  | PQ p()

  ::=  U<t  | X 
where Q 2 {<,>,¸,·}

 P< 0.5(◊
<10 full)

 Probability that queue becomes full in 10 units of time is less than 0.5

 P>0.98(: retransmit U<200 receive)

 Probability that a message is received successfully within 200 time
units without any need for retransmission is greater than 0.98

Gul Agha, University of Illinois 65

July 6, 2016

Statistical Model Checking

Model or Implementation

No: 

Model-Checker

Yes: 

Don’t Know

•Decoupled from the tool

• Run implementation to

generate samples, or

• Get Samples from Monte-

Carlo simulation of model

Property

Gul Agha, University of Illinois 66

July 6, 2016

Checking P<0.6(p U<12 q) statistically at s

 On 21 paths (p U<12 q) is satisfied

 21/30 > 0.6
 can we say that P<0.6(p U<12 q) is violated

at s ??

 Statistically, yes, provided we quantify the
error in our decision

 error = 

= Pr[On 21 (or more) out of 30 paths (p U<12 q) hold

| probability that (p U<12 q) holds on a path is less

than 0.6]

· Pr[X ¸ 21] where X~Binomial(30,0.6)

Sample contains, say, 30

paths from s

…….

p U<12 q

Gul Agha, University of Illinois 67

July 6, 2016

Error (p-value)

 Let r = (# of paths on which (p U<12 q) hold / # of total paths)

 Let p = Pr[(p U<12 q) holds on a path]

 “no” answer : (formula violates)

 “yes” answer : (formula holds)

0.0 1.010/30 0.6

pr

0.0 1.0
21/30

0.6

rp error = Pr[r ≥ 21/30 | p ≤ 0.6]

error = Pr[r ≤ 10/30 | p > 0.6]

Gul Agha, University of Illinois 68

July 6, 2016

Nested: Checking P<0.6(1U
<122) at s

• 1 and 2 contain nested probabilistic operators

 Checking (1 U<12 2) over a path

 Answers are not simply “yes” or “no”

 Answers can be

 “yes” with error 

 “no” with error 

 “don’t know”

 Need a modified decision procedure

 Handle “don’t know” to get useful answers

 Incorporate error of decision for sub-formulas

Gul Agha, University of Illinois 69

July 6, 2016

Checking P<0.6(1U
<122) at s (Problem)

Solution

1. Resolve “don’t know” (?) in
adversarial fashion

 Observation region

2. Create “uncertainty region”
to incorporate error
associated with sub-
formulas.

…….

1 U<12 2

?
1 32

?

Gul Agha, University of Illinois 70

Evolving Systems

 Big data applications require

approximate answers in a real-time.

 Probabilistic actor-based programming

 Adaptive programs:

 Use predictive distributed monitoring and

statistical inference.

 Learning and prediction using Bayesian

methods

time

p
ro

b
a
b
ili

ty

approximation

July 6, 2016 Gul Agha, University of Illinois 71

 100 nodes, 5 Abstract States  5100 potential states

 Interested in aggregate properties or expected values

 Model state as pmf vector (superposition of probabilities)

Representing State

July 6, 2016 Gul Agha, University of Illinois

nnspspsps  ...2211

1s 2s 3s
nss …

72

 Transitions may be governed by a Markov model

 pmf vector defines the initial state for a DTMC

 Search in an Euclidean space

 Property stabilizes after a computable depth

 Model checking reduced to linear algebra

 Euclidean Model Checking

Evolution of Probability Distributions

July 6, 2016 Gul Agha, University of Illinois 73

 Programming based on the Actor Model facilitates

scalable, secure development of concurrent

programs.

 Probabilistic programming methods needed

 New reasoning methods needed:

 Scalable

 Model probabilistic computation

 Address quantitative properties

Conclusions

July 6, 2016 Gul Agha, University of Illinois 74

 Gul Agha, ACTORS - a model of concurrent computation in distributed systems, MIT Press Series in

Artificial Intelligence. MIT Press, 1986.

 Gul Agha, “Concurrent object-oriented programming,” Communications of the ACM, 33(9):125–141,

Sep 1990.

 Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott, “Towards a theory of actor

computation,” in Rance Cleaveland, editor, CONCUR ’92, Third International Conference on

Concurrency Theory, Stony Brook, NY, USA, August 24-27, 1992, Proceedings, volume 630 of Lecture

Notes in Computer Science, pages 565–579. Springer, 1992.

 Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott, “A foundation for actor computation,”

Journal of Functional Programming, 7(1):1–72, 1997.

 WooYoung Kim and Gul Agha. “Efficient Support of Location Transparency in Concurrent Object-

Oriented Programming Languages”. In: Proceedings of Supercomputing ’95, San Diego, CA, USA,

December 4-8, 1995. Ed. by Sidney Karin. IEEE Computer Society / ACM, 1995, 39pp.

References I: Actors

July 6, 2016 Gul Agha, University of Illinois 75

 Christopher R. Houck and Gul Agha. “HAL: A High-Level Actor Language and Its Distributed

Implementation”. In: Proceedings of the 1992 International Conference on Parallel Processing (ICPP).

1992, pp. 158–165. Svend Frolund and Gul Agha. “A Language Framework for Multi-Object

Coordination”. In: ECOOP’93 - Object-Oriented Programming, 7th European Conference,

Kaiserslautern, Germany, July 26-30, 1993, Proceedings. Ed. by Oscar Nierstrasz. Vol. 707. Lecture

Notes in Computer Science. Springer, 1993, pp. 346–360.

 Gul Agha, Svend Frolund, WooYoung Kim, Rajendra Panwar, Anna Patterson, and Daniel C. Sturman.

“Abstraction and modularity mechanisms for concurrent computing”. In: IEEE Parallel and Distributed

Technology 1.2 (1993), pp. 3–14.

 Carlos A. Varela and Gul Agha. “Programming Dynamically Reconfigurable Open Systems with

SALSA”. In: SIGPLAN Notices. ACM Conference on Object-Oriented Programming, Systems,

Languages and Applications: Onward! Track. Vol. 36. 12. 2001, pp. 20–34

 Peter Dinges and Gul Agha. “Scoped Synchronization Constraints for Large Scale Actor Systems”. In:

Coordination Models and Languages - 14th International Conference, COORDINATION 2012,

Stockholm, Sweden, June 14-15, 2012. Proceedings. Ed. by Marjan Sirjani. Vol. 7274. Lecture Notes in

Computer Science. Springer, 2012, pp. 89–103.

References II: Actor Languages and Coordination

July 6, 2016 Gul Agha, University of Illinois 76

 K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing engine for C,” In M. Wermelinger and H. Gall,

editors, Proceedings of the 10th European Software Engineering Conference held jointly with 13th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, 2005, Lisbon, Portugal, September 5-9, 2005,

pages 263–272. ACM, 2005.

 K. Sen and G. Agha, “A race-detection and flipping algorithm for automated testing of multi-threaded programs,” In

E. Bin, A. Ziv, and S. Ur, editors, Hardware and Software, Verification and Testing, Second International Haifa

Verification Conference, HVC 2006, Haifa, Israel, October 23-26, 2006. Revised Selected Papers, volume 4383 of

Lecture Notes in Computer Science, pages 166–182. Springer, 2007.

 P. Dinges and G. Agha “Solving complex path conditions through heuristic search on induced polytopes,” In

Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE

2014, pages 425–436. ACM, 2014.

 Peter Dinges and Gul Agha. 2014. Targeted test input generation using symbolic-concrete backward execution. In

Proceedings of the 29th ACM/IEEE international conference on Automated software engineering (ASE '14). ACM,

New York, NY, USA, 31-36. DOI=http://dx.doi.org/10.1145/2642937.2642951

References III: Concolic Testing

July 6, 2016 Gul Agha, University of Illinois 77

 K. Sen and G. Agha, “Automated systematic testing of open distributed programs,” In L. Baresi and R.

Heckel, editors, Fundamental Approaches to Software Engineering, 9th International Conference,

FASE 2006, Held as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2006, Vienna, Austria, March 27-28, 2006, Proceedings, volume 3922 of Lecture Notes in

Computer Science, pages 339–356. Springer, 2006.

 Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul Agha. 2009. A Framework for State-Space

Exploration of Java-Based Actor Programs. In Proceedings of the 2009 IEEE/ACM International

Conference on Automated Software Engineering (ASE '09). IEEE Computer Society, Washington, DC,

USA, 468-479. DOI=http://dx.doi.org/10.1109/ASE.2009.88

 Steven Lauterburg, Rajesh K. Karmani, Darko Marinov, and Gul Agha. 2010. Basset: a tool for

systematic testing of actor programs. In Proceedings of the eighteenth ACM SIGSOFT international

symposium on Foundations of software engineering (FSE '10). ACM, New York, NY, USA, 363-364.

DOI=http://dx.doi.org/10.1145/1882291.1882349

References IV: Actor Testing Tools

July 6, 2016 Gul Agha, University of Illinois 78

 Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. 2004. Efficient Decentralized

Monitoring of Safety in Distributed Systems. In Proceedings of the 26th International

Conference on Software Engineering (ICSE '04). IEEE Computer Society, Washington, DC,

USA, 418-427.

 Sen, Koushik, Grigore Roşu, and Gul Agha. "Online efficient predictive safety analysis of

multithreaded programs." International Conference on Tools and Algorithms for the

Construction and Analysis of Systems. Springer Berlin Heidelberg, 2004.

References V: Runtime Verification

July 6, 2016 Gul Agha, University of Illinois 79

 Kwon, YoungMin, and Gul Agha. "Linear inequality LTL (iLTL): A model checker for discrete time

markov chains." International conference on formal engineering methods. Springer Berlin Heidelberg,

2004.

 Sen, Koushik, Mahesh Viswanathan, and Gul Agha. "Statistical model checking of black-box

probabilistic systems." International Conference on Computer Aided Verification. Springer Berlin

Heidelberg, 2004.

 Sen, Koushik, Mahesh Viswanathan, and Gul Agha. "On statistical model checking of stochastic

systems." International Conference on Computer Aided Verification. Springer Berlin Heidelberg, 2005.

 Agha, Gul, José Meseguer, and Koushik Sen. "PMaude: Rewrite-based specification language for

probabilistic object systems." Electronic Notes in Theoretical Computer Science 153.2 (2006): 213-239.

 Korthikanti, Vijay Anand, et al. "Reasoning about MDPs as transformers of probability distributions."

Quantitative Evaluation of Systems (QEST), 2010 Seventh International Conference on the. IEEE,

2010.

 Kwon, YoungMin, and Gul Agha. "Verifying the evolution of probability distributions governed by a

DTMC." IEEE Transactions on Software Engineering 37.1 (2011): 126-141.

References VI: Probabilistic Programming, Statistical Model

Checking and Euclidean Model Checking

July 6, 2016 Gul Agha, University of Illinois 80

 Rice, Jennifer A., et al. "Flexible smart sensor framework for autonomous structural health

monitoring." Smart structures and Systems 6.5-6 (2010): 423-438.

 Jang, Shinae, et al. "Structural health monitoring of a cable-stayed bridge using smart sensor

technology: deployment and evaluation." Smart Structures and Systems 6.5-6 (2010): 439-

459.

 Kwon, YoungMin, Kirill Mechitov, and Gul Agha. "Design and implementation of a mobile

actor platform for wireless sensor networks." Concurrent objects and beyond. Springer Berlin

Heidelberg, 2014. 276-316.

 Khamespanah, Ehsan, Kirill Mechitov, Marjan Sirjani, and Gul Agha. "Schedulability Analysis

of Distributed Real-Time Sensor Network Applications Using Actor-Based Model Checking."

In International Symposium on Model Checking Software, pp. 165-181. Springer

International Publishing, 2016.

Sensor Network Application

July 6, 2016 Gul Agha, University of Illinois 81

