Erika Abraham

RWTH Aachen University, Germany

STAF/SEFM 2016
July 06, 2016

"W Erika Abraham - Satisfiability Checking: Theory and Applications 1/41

Satisfiability problem

The satisfiability problem is the problem of deciding whether a logical
formula is satisfiable.

We focus on the automated solution of the satisfiability problem for
quantifier-free first-order logic over different theories

using SAT modulo theories (SMT) solving, and on applications of such
technologies.

"W Erika Abraham - Satisfiability Checking: Theory and Applications 2/41

Decision procedures for first-order logic over arithmetic theories
in mathematical logic

1940

1960
1970

1980

2000

2010

i Erika Abraham - Satisfiability Checking: Theory and Applications 3/41

Decision procedures for first-order logic over arithmetic theories
in mathematical logic

1940 Computer architecture development

1960
1970

1980

2000

2010

i Erika Abraham - Satisfiability Checking: Theory and Applications 3/41

1940

1960

1970

1980

2000

2010

Decision procedures for first-order logic over arithmetic theories
in mathematical logic

Computer architecture development

Computer algebra
systems

First computer
algebra systems

Grobner bases

CAD

Partial CAD

Virtual
substitution

Erika Abraham - Satisfiability Checking: Theory and Applications

3/41

1940

1960

1970

1980

2000

2010

Decision procedures for first-order logic over arithmetic theories

in mathematical logic

Computer architecture development

Computer algebra

systems

First computer
algebra systems

Grobner bases

CAD

Partial CAD

Virtual
substitution

SAT solvers
(propositional logic)

Enumeration

DP (resolution)
DPLL (propagation)
NP-completeness

Conflict-directed
backjumping

CDCL

Watched literals
Clause learning/forgetting
Variable ordering heuristics
Restarts

Erika Abraham - Satisfiability Checking: Theory and Applications

3/41

1940

1960

1970

1980

2000

2010

Decision procedures for first-order logic over arithmetic theories

in mathematical logic

Computer architecture development

Computer algebra

systems

First computer
algebra systems

Grobner bases

CAD

Partial CAD

Virtual
substitution

SAT solvers
(propositional logic)

Enumeration

DP (resolution)
DPLL (propagation)
NP-completeness

Conflict-directed
backjumping

CDCL

Watched literals
Clause learning/forgetting
Variable ordering heuristics
Restarts

Wi Erika Abraham - Satisfiability Checking: Theory and Applications

SMT solvers
(SAT modulo theories)

Decision procedures
for combined theories

DPLL(T)
Equalities
Uninterpreted functions
Bit-vector arithmetic
Array theory
Arithmetic...

3/41

2020

2010

2000

1990

1980

1970

1960

4/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications

2010

1990

1980

1970

1960

SAT

4/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications

1990

1980

1970

1960

“We have success stories of using zChaff to solve problems with more

than one million variables and 10 million clauses.

(Of course, it can’'t solve every such problem!).” [-Chait web page)

2"

e

SAT

(33

4/41

ML Erika Abraham - Satisfiability Checking: Theory and Applications

Tool development

2010

1990

1980

1970

“We have success stories of using zChaff to solve problems with more

than one million variables and 10 million clauses.
(Of course, it can’t solve every such problem!).”

“ The efficiency of our programs allowed us to solve over one hundred

open quasigroup problems in design theory.”

1960

SAT

4/41

Erika Abraham - Satisfiability Checking: Theory and Applications

2010

1990

1980

1970

1960

SAT

4/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications

2020

1990

1980

1970

1960

SAT
SMT

4/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications

Satisfiability checking for propositional logic

Success story: SAT-solving
m Practical problems with millions of variables are solvable.
m Frequently used in different research areas for, e.g., analysis,
synthesis and optimisation.
m Also massively used in industry for, e.g., digital circuit design and
verification.

i Erika Abraham - Satisfiability Checking: Theory and Applications 5/41

Satisfiability checking for propositional logic

Success story: SAT-solving
m Practical problems with millions of variables are solvable.
m Frequently used in different research areas for, e.g., analysis,
synthesis and optimisation.
m Also massively used in industry for, e.g., digital circuit design and
verification.
Community support:
m Standardised input language, lots of benchmarks available.
m Competitions since 2002.
2016 SAT Competition: 6 tracks, 29 solvers in the main track.
SAT Live! forum as community platform, dedicated conferences,
journals, etc.

i Erika Abraham - Satisfiability Checking: Theory and Applications 5/41

Assumption: formula in conjunctive normal form (CNF)

ci: (—a Vv dvVv e)
c: (—a Vv d VvV -e)
c3: (. —a Vv -d VvV e)
cs: (ma Vv -d VvV —e)
cs: (vV b)
c: (a Vv —b)
c7: (bV ¢)
cg: (-b V =c)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration
dvVv e)

c1: (—a

(\ o —
c: (ma Vv d Vv —e)
c3: (—a Vv -d vV e) /\
cs: (ma Vv -d V -e) /\

v SVANA
c6: (a Vv -b)
o by e AR AR AR
cg: (-b V -c)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration
(&

-a dvVv e)

(\ o —
c: (ma Vv d Vv —e)
c3: (—a Vv -d vV e) /\
cs: (ma Vv -d V -e) /\

v SVANA
c6: (a Vv -b)
o by e AR AR AR
cg: (-b V -c)

Decision

"W Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration

c1: (—a Vv d VvV e) /@\
c: (ma Vv d Vv —e)
c3: (—a Vv -d vV e) /\

cy: (—a Vv -d V -e) /\

i Cav AR

c6: (a Vv -b)

o RV AR AR AR

cg: (-b V -c)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration

c1: (—a Vv d VvV e) /@\
c: (ma Vv d Vv —e)
c3: (—a Vv -d vV e) /\

cy: (—a Vv -d V -e) /\

i Cav AR

c6: (a Vv -b)

o RV AR AR AR

cg: (-b V -c)

Decision

"W Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration

c1: (ma Vv d Vv e) a
c:(—a Vv d VvV —e) n

c3: (—a Vv -d VvV e)

cs: (—a Vv -d VvV —e) /\

s @y b IVANAN

c: (aVv =b)

o A, . S ARARARNA

cg: (-b V -)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation

c1: (ma Vv d Vv e) a
c:(—a Vv d VvV —e) n

c3: (—a Vv -d VvV e)

cs: (—a Vv -d VvV —e) /\

s @y b IVANAN

c: (aVv =b)

o A, . S ARARARNA

cg: (-b V -ic)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation

ci: (—a Vv dV e) a]
c: (=-a Vv d Vv —e) b]
c3: (—a Vv -d VvV e)
cy: (—a Vv -d V -e) /\
c: (I I SVANNA
c6: (a Vv —b)
MLl W DA AN
cg: (=b V -c)
Boolean constraint propagation

MEET Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation

ci: (—a Vv dvVv e)
c:(—a Vv d VvV —e)
c3: (—a Vv -d VvV e)
cs: (—a Vv -d VvV —e)
i av b IRATA
c: (aVv =b)
L e A
cg: (-b V -c)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation

ci: (—a Vv dvVv e)
c:(—a Vv d VvV —e)
c3: (—a Vv -d VvV e)
cs: (—a Vv -d VvV —e)
i av b IRATA
c: (aVv =b)
L e A
cg: (-b V -c)

Decision

"W Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation

c1: (—-a Vv dVv e)

c: (—-a Vv d VvV —e)

c3: (—a Vv -d vV e)

cs: (ma Vv —-d VvV —e)

cs: (vV b) /\

c: (aVv =b)

el P > NAA
cg: (-b V -c)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation

c1: (-a Vv dV e)

c: (—a Vv d VvV —e)

c3: (=a Vv -d VvV e)

cy: (—a Vv -d V -e)

st (vV b) /\

c: (a Vv —-b)

e 7\ m SRR AR
cg: (-b V -)

Boolean constraint propagation

MEET Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation

c1: (—-a Vv dVvV e)
c: (—a Vv d VvV —e)
c3: (—a Vv -d vV e)
cs: (ma Vv —-d VvV —e)
cs: (vV b)
c: (aVv =b)
c7: (bV ¢)
cg: (-b V -)

MEET Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation

c1: (-a Vv dvVv e
c: (—-a Vv d VvV —e
c3: (—a Vv -d VvV e
cy: (—a Vv -d V -e
cs: (vV b

c: (a Vv —-b

c7: (bV ¢

cg: (-b V -

o

MEET Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation

c1: (—-a Vv dVvV e)
c: (—a Vv d VvV —e)
c3: (—a Vv -d vV e)
cs: (ma Vv —-d VvV —e)
cs: (vV b)
c: (a Vv —-b)
c7: (bV ¢)
cg: (-b V -)
Conflict

MEET Erika Abraham - Satisfiability Checking: Theory and Applications 6/41

Assumption: conjunctive normal form (CNF)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 7/41

Assumption: conjunctive normal form (CNF)

Derivation rule form:

antecendent, ... antecendent,
consequent

Rule_name

"W Erika Abraham - Satisfiability Checking: Theory and Applications 7/41

Assumption: conjunctive normal form (CNF)

Derivation rule form:

antecendent, ... antecendent,
consequent

Rule_name

(Lhv...vlvy) (QVv...VI[,V-x)
hv..VLvIv...vID)

Ruleres

"W Erika Abraham - Satisfiability Checking: Theory and Applications 7/41

Assumption: conjunctive normal form (CNF)

Derivation rule form:

antecendent, ... antecendent,
consequent

Rule_name

(Lv..vvy)y (V... VI,V -x)

(V. VLV V) Ruleres

Ax. C,AC_xAC Resolvents(C,,C-,)AC

"W Erika Abraham - Satisfiability Checking: Theory and Applications 7/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation

c1: (—-a Vv dVvV e)
c: (—a Vv d VvV —e)
c3: (—a Vv -d vV e)
cs: (ma Vv —-d VvV —e)
cs: (vV b)
c: (a Vv —-b)
c7: (bV ¢)
cg: (-b V -)
Conflict

MEET Erika Abraham - Satisfiability Checking: Theory and Applications 8/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation + Resolution

c1: (—-a Vv dVvV e)
c: (—a Vv d VvV —e)
c3: (—a Vv -d vV e)
cs: (ma Vv —-d VvV —e)
cs: (vV b)
c: (a Vv —-b)
c7: (bV ¢)
cg: (-b V -)
Conflict

MEET Erika Abraham - Satisfiability Checking: Theory and Applications 8/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation + Resolution

c1: (—-a Vv dVvV e)
c: (—-a Vv d VvV —e)
c3: (—a Vv -d vV e)
cs: (ma Vv —-d VvV —e)
cs: (vV b)
c: (a Vv —-b)
c7: (bV ¢)
cg: (-b VvV =c)
Conflict resolution and backtracking

MEET Erika Abraham - Satisfiability Checking: Theory and Applications 8/41

DPLL SAT solving with conflict-directed clause learning

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation + Resolution

c1: (—~a Vv dvVv e)
2 (na Vv d Vv —e)
cz: (na Vv -d VvV e)
cg: ((—ma Vv -d V —e)
cs: (vV b)
c: (a Vv -b)
c7: (bv ¢)
cs: (=b VvV =-c)
cs:(maV-dV-e) c3:(maV-dVe)
c9 : (—aV —d)

Erika Abraham - Satisfiability Checking: Theory and Applications 8/41

DPLL SAT solving with conflict-directed clause learning

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation + Resolution

c1: (—~a Vv dvVv e)
c:(-a Vv d Vv —e)
c3: (=—a Vv -d VvV e)
¢ (—a Vv -d vV —e)
cs5: (v b)
c: (a Vv -b)
c7: (bv ¢)
cs: (=b VvV =-c)
co: (—a Vv —d)
c4:(maV-dV-e) c3:(—aV-dVe)
c9 : (—aV —d)

Erika Abraham - Satisfiability Checking: Theory and Applications 8/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation + Resolution

ci1: (—ma Vv dvVv e) /@\
c: (ma Vv d Vv —e)
c3: (—a Vv -d vV e) /\

cy: (—a Vv -d V -e) /\

cs: (vV b) /\ /\

c6: (a Vv -b)

e DN NA

cg: (-b V -c)

co: (—a Vv -d)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 8/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation + Resolution

cr: (na Vv dvVv e) /@\
c:(—a Vv d Vv —e)
c3: (—a Vv -d vV e) /\
cs: (—a Vv -d V —e) /\
st av b SVANEVAN
c: (aVv —b)
AR DA
cg: (-b VvV -c)
co: (—a Vv -d)
Boolean constraint propagation

MEET Erika Abraham - Satisfiability Checking: Theory and Applications 8/41

Assumption: formula in conjunctive normal form (CNF)
Ingredients: Enumeration + Boolean constraint propagation + Resolution

c1: (ma Vv d Vv e) a
c: (-a Vv d VvV —e) C9
c3: (—a Vv -d vV e)

cy: (—a Vv -d V -e) /\

siav oy ANA

c: (aVv =b)

o (by e SRR ARVAR

cg: (-b VvV —c)

co: (—a Vv —d)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 8/41

m Propositional logic is sometimes too weak for modelling.
m We need more expressive logics and decision procedures for them.

m Logics: quantifier-free (QF) fragments of first-order logic
over various theories.

m Our focus: SAT-modulo-theories (SMT) solving.

"I Erika Abraham - Satisfiability Checking: Theory and Applications 9/41

Satisfiability modulo theories solving

Propositional logic is sometimes too weak for modelling.

We need more expressive logics and decision procedures for them.

Logics: quantifier-free (QF) fragments of first-order logic
over various theories.

Our focus: SAT-modulo-theories (SMT) solving.

SMT-LIB as standard input language since 2004.

Competitions since 2005.
SMT-COMP 2016 competition:

4 tracks, 41 logical categories.

QF linear real arithmetic: 7 + 2 solvers, 1626 benchmarks.

QF linear integer arithmetic: 6 + 2 solvers, 5839 benchmarks.

QF non-linear real arithmetic: 5 + 1 solvers, 10245 benchmarks.
QF non-linear integer arithmetic: 7 + 1 solvers, 8593 benchmarks.

i Erika Abraham - Satisfiability Checking: Theory and Applications 9/41

Source: http://smtlib.cs.uiowa.edu/logics.shtml

"W Erika Abraham - Satisfiability Checking: Theory and Applications 10/ 41

http://smtlib.cs.uiowa.edu/logics.shtml

Source: http://smtlib.cs.uiowa.edu/logics.shtml

"W Erika Abraham - Satisfiability Checking: Theory and Applications 10/ 41

http://smtlib.cs.uiowa.edu/logics.shtml

Source: http://smtlib.cs.uiowa.edu/logics.shtml

"W Erika Abraham - Satisfiability Checking: Theory and Applications 10/ 41

http://smtlib.cs.uiowa.edu/logics.shtml

Source: http://smtlib.cs.uiowa.edu/logics.shtml

"W Erika Abraham - Satisfiability Checking: Theory and Applications 10/ 41

http://smtlib.cs.uiowa.edu/logics.shtml

Source: http://smtlib.cs.uiowa.edu/logics.shtml

"W Erika Abraham - Satisfiability Checking: Theory and Applications 10/ 41

http://smtlib.cs.uiowa.edu/logics.shtml

Source: http://smtlib.cs.uiowa.edu/logics.shtml

"W Erika Abraham - Satisfiability Checking: Theory and Applications 10/ 41

http://smtlib.cs.uiowa.edu/logics.shtml

Source: http://smtlib.cs.uiowa.edu/logics.shtml

"W Erika Abraham - Satisfiability Checking: Theory and Applications 10/ 41

http://smtlib.cs.uiowa.edu/logics.shtml

Source: http://smtlib.cs.uiowa.edu/logics.shtml

"W Erika Abraham - Satisfiability Checking: Theory and Applications 10/ 41

http://smtlib.cs.uiowa.edu/logics.shtml

m We focus on lazy SMT solving.

m Alternative eager approach: transform problems into propositional
logic and use SAT solving for satisfiability checking.

Condition: Logic is not more expressive than propositional logic.

"W Erika Abraham - Satisfiability Checking: Theory and Applications 11/ 41

quantifier-free FO formula

("2
Boolean abstraction l
Tseitin's transformation ¥,

[

propositional logic formula in CNF

@ SAT or UNSAT

SAT
theory constraints or +lemmas
UNSAT

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 12/ 41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a v b)HIAN(¢ VvV d)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a v b)HIAN(¢ VvV d)

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a v b)HIAN(¢ VvV d)

—a

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a v b)HIAN(¢ VvV d)

-d, b

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a v b)HIAN(¢ VvV d)

-d, b

x>0, x>2

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a v b)HIAN(¢ VvV d)
—|a,b

x>0, x>2 SAT

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a v b)HIAN(¢ VvV d)

-d, b, -C

x>0, x>2

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a v b)HIAN(¢ VvV d)

-d, b, -C, d

x>0, x>2

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a v b)HIAN(¢ VvV d)

-d, b, -C, d

x>0, x>2 X #1,x’<0

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a v b)HIAN(¢ VvV d)

x20,x>2 2 # 1,2 <0 UNSAT: ~(:> < 0)

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a Vv b)HIA(¢ VvV d YA

x20,x>2 2 # 1,2 <0 UNSAT: ~(:> < 0)

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a Vv b)HIA(¢ VvV d YA

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a Vv b)HIA(¢ VvV d YA

-d

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a Vv b)HIA(¢ VvV d YA

—|d, c

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a Vv b)HIA(¢ VvV d YA

—|d, c

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a vV b)HIYA(¢ VvV d YA
—|d,C

x>0, x> = SAT

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a Vv b)HIA(¢ VvV d YA

—|d, c, a

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a Vv b)HIA(¢ VvV d YA

—|d, c, Ta, b

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a Vv b)HIA(¢ VvV d YA

—|d, c, Ta, b

220, x2=1,x20,x>2

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a Vv b)HIA(¢ VvV d YA

>0, x=1,x20,x>2 UNSAT: =(x> = 1 Ax > 2)

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a VvV b)IAC ¢ V d YAEDA(eV-b)

>0, x=1,x20,x>2 UNSAT: =(x> = 1 Ax > 2)

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a VvV b)IAC ¢ V d YAEDA(eV-b)

—|d, c

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a VvV b)IAC ¢ V d YAEDA(eV-b)

—|d, C, -b

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a VvV b)IAC ¢ V d YAEDA(eV-b)

—|d, C, —|b, a

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a VvV b)IAC ¢ V d YAEDA(eV-b)

—|d, C, —|b, a

>0, x2=1,x<2,x<0

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a VvV b)IAC ¢ V d YAEDA(eV-b)

>0, %=1 ,x<2,x<0 SAT

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a VvV b)IAC ¢ V d YAEDA(eV-b)

SAT

Theory solver(s)

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

(x<OVx>2)AG =1V <0)

\

(a VvV b)IAC ¢ V d YAEDA(eV-b)

SAT

Theory solver(s)

N.B. There are also other SMT solving techniques, which more closely
integrate some theory-solving parts into the SAT-solving mechanism.

"W Erika Abraham - Satisfiability Checking: Theory and Applications 13/ 41

Some theory solver candidates for arithmetic theories

Linear real arithmetic: Linear integer arithmetic:
m Simplex m Cutting planes, Gomory cuts
m Ellipsoid method m Branch-and-bound
m Fourier-Motzkin variable elimination m Bit-blasting

m Interval constraint propagation
m Interval constraint propagation

Non-linear real arithmetic: Non-linear integer arithmetic:
m Cylindrical algebraic decomposition m Generalised branch-and-bound

m Grobner bases
m Bit-blasting

m Virtual substitution
m Interval constraint propagation

i Erika Abraham - Satisfiability Checking: Theory and Applications 14/ 41

Some corresponding implementations in CAS

Grobner bases

m CoCoA, F4, Maple, Mathematica, Maxima, Singular, Reduce, ...

Cylindrical algebraic decomposition (CAD)

m Mathematica, QEPCAD, Reduce, ...

Virtual substitution (VS)

® Reduce, ...

Strength: Efficient for conjunctions of real constraints.

i Erika Abraham - Satisfiability Checking: Theory and Applications 15/ 41

http://cocoa.dima.unige.it/
http://maxima.sourceforge.net/
http://www.singular.uni-kl.de/
http://www.reduce-algebra.com/
http://www.reduce-algebra.com/

Some corresponding implementations in CAS

Grobner bases

m CoCoA, F4, Maple, Mathematica, Maxima, Singular, Reduce, ...

Cylindrical algebraic decomposition (CAD)

m Mathematica, QEPCAD, Reduce, ...

Virtual substitution (VS)

® Reduce, ...

Strength: Efficient for conjunctions of real constraints.

So why don’t we just plug in an algebraic decision procedure as theory
solver into an SMT solver?

i Erika Abraham - Satisfiability Checking: Theory and Applications 15/ 41

http://cocoa.dima.unige.it/
http://maxima.sourceforge.net/
http://www.singular.uni-kl.de/
http://www.reduce-algebra.com/
http://www.reduce-algebra.com/

m Theory solvers should be SMT-compliant, i.e., they should
work incrementally,
generate lemmas explaining inconsistencies, and
be able to backtrack.

"W Erika Abraham - Satisfiability Checking: Theory and Applications 16/ 41

Why not use CAS out of the box?

m Theory solvers should be SMT-compliant, i.e., they should
work incrementally,
generate lemmas explaining inconsistencies, and
be able to backtrack.

m Originally, the mentioned methods
are not SMT-compliant,
they are seldomly available as libraries, and
are usually not thread-safe.

i Erika Abraham - Satisfiability Checking: Theory and Applications 16/41

Why not use CAS out of the box?

m Theory solvers should be SMT-compliant, i.e., they should
work incrementally,
generate lemmas explaining inconsistencies, and
be able to backtrack.

m Originally, the mentioned methods
are not SMT-compliant,
they are seldomly available as libraries, and
are usually not thread-safe.

m Usually, SMT-adaptations are tricky.

i Erika Abraham - Satisfiability Checking: Theory and Applications 16/41

http://www.sc-square.org/CSA/welcome.html

sc?
Satisfiability Checking and Symbolic Computation

Bridging Two Communities to Solve Real Problems
Coordination and Support Activity

SUMMARY

This project is funded (subject to contract) as project H2020-FETOPN-2015-CSA_712689 of the European Union. It is the start of the
general push to create a real SC? community.

Background

The use of advanced methods to solve practical and industrially relevant problems by computers has a long history. Whereas Symbolic
Computation is concerned with the algorithmic determination of exact solutions to complex mathematical problems, more recent
developments in the area of Satisfiability Checking tackle similar problems but with different algorithmic and technological solutions. Though
both communities have made remarkable progress in the last decades, they still need to be strengthened to tackle practical problems of
rapidly increasing size and complexity. Their separate tools (computer algebra systems and SMT solvers) are urgently needed to examine
prevailing problems with a direct effect to our society. For example, Satisfiability Checking is an essential backend for assuring the security
and the safety of computer systems. In various scientific areas, Symbolic Computation enables dealing with large mathematical problems
out of reach of pencil and paper developments. Currently the two communities are largely disjoint and unaware of the achievements of each
other, despite strong reasons for them to discuss and collaborate, as they share many central interests. However, researchers from these two
communities rarely interact, and also their tools lack common, mutual interfaces for unifiying their strengths. Bridges between the
communities in the form of common platforms and roadmaps are necessary to initiate an exchange, and to support and to direct their
interaction. These are the main objectives of this CSA. We will initiate a wide range of activities to bring the two communities together,
identify common challenges, offer global events and bilateral visits, propose standards, and so on. We believe that these activities will

"W Erika Abraham - Satisfiability Checking: Theory and Applications 17 /41

http://www.sc-square.org/CSA/welcome.html

sc?
Satisfiability Checking and Symbolic Computation

Bridging Two Communities to Solve Real Problems
Coordination and Support Activity

SUMMARY

Consortium
This project is funded (subject to col .
general pusn to create a real SC2 con University of Bath Ja.mes’ Dave’npon; Russell Bradford
RWTH Aachen Erika Abraham
Background Fondazione Bruno Kessler Alberto Griggio; Alessandro Cimatti
Universita degli Studi di Genova Anna Bigatti
The use of advanced methods to so| Maplesoft Europe Ltd Jiirgen Gerhard; Stephen Forrest
dceouzr('}ﬁ;ﬂ;;s '; t?]c"e"zfga‘egl ;";:? 512‘;"‘ Université de 'Lnrratine (LORIA) Pascal Fontaine
hoth communities have made remark Coventry University Matthew England
rapidly increasing size and complexity] University of Oxford Martin Brain
prevailing problems with a direct effed Universitat Kassel Werner Seiler; John Abbott
i?;ﬁ:;eg g%r;ﬁeﬁm‘ Ma?< Pla|_1<ik In_stitut fur Informatik Thomas Sturm)))
other, despite strong reasons for them, Universitat Linz Bruno Buchberger; Wolfgang Windsteiger; Roxana-Maria Holom
communities rarely interact, and alsb—TET TOOIS TaCK COMITON, TITITHEr TETTEtes ToT OTyITg e STenyTs.— SMges DetwesTT e

communities in the form of common platforms and roadmaps are necessary to initiate an exchange, and to support and to direct their
interaction. These are the main objectives of this CSA. We will initiate a wide range of activities to bring the two communities together,
identify common challenges, offer global events and bilateral visits, propose standards, and so on. We believe that these activities will

"W Erika Abraham - Satisfiability Checking: Theory and Applications 17 /41

We have developed the SMT-RAT library of theory modules.
[SAT’'12, SAT’15]

https://github.com/smtrat/smtrat/wiki

SMT
RAT

l (
I . Al

Florian Corzilius Gereon Kremer Ulrich Loup

"W Erika Abraham - Satisfiability Checking: Theory and Applications 18/ 41

https://github.com/smtrat/smtrat/wiki

Our SMT-RAT library

SMT Solver
Strategic composition of SMT-RAT modules

SMT-RAT
(SMT real-algebraic toolbox)
preprocessing, SAT and
theory solver modules

CArL
real-arithmetic
computations

gmp, Eigen3, boost

i Erika Abraham - Satisfiability Checking: Theory and Applications 19/41

Strategic composition of solver modules in SMT-RAT

RWTH

SMT solver
Manager
SAT ¢ N Condition Condition Condition
solver l 2 4 4
Module Module Module| |Module

Erika Abraham - Satisfiability Checking: Theory and Applications

20/ 41

Solver modules in SMT-RAT

Libraries for basic arithmetic computations
SAT solver

CNF converter

Preprocessing/simplifying modules
Interval constraint propagation

Simplex

Virtual substitution

Cylindrical algebraic decomposition

m Grbbner bases
m Generalised branch-and-bound

Erika Abraham - Satisfiability Checking: Theory and Applications 21 /41

Zlx1,...,x,] is the set of all polynomials over variables x1, ..., x,.

y
_ _7\2 _7\2 _
p2=x=Yy p1>0
P10
p1<0

C={p1<0,p2=0} 2t
P={pi, p2}

p2<0

)2
p2>0
} X

"I Erika Abraham - Satisfiability Checking: Theory and Applications 22/41

Zlx1,...,x,] is the set of all polynomials over variables x1, ..., x,.

y
_ _7\2 _7\2 _
p2=x-y pi>0
P10
p1<0

C={p1<0,p2=0} 7 4k
P={pi, p>}

P <0 Solution set

P2~ 0
p2>0
} X

"I Erika Abraham - Satisfiability Checking: Theory and Applications 22/41

Solution sets and P-sign-invariant regions

Zlx1,...,x,] is the set of all polynomials over variables xi, ..., x,.

pr=@=27+@r-27-1

€ Z[x,y]
p2=x=Yy Y

C={p1<0,p,=0}
P={pi, p}
Solution set

Solution set = finite union of P-sign-invariant regions

i Erika Abraham - Satisfiability Checking: Theory and Applications 22/ 41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

yoooa
24
R x

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

yoooa !
21 4
RE x

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications

23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications

23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications

23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications

23/41

"W Erika Abraham - Satisfiability Checking: Theory and Applications

x

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

2-- . .
3
3 X

"W Erika Abraham - Satisfiability Checking: Theory and Applications 23/41

A CAD for a set P of polynomials from Z[xi, ..., x,]
splits R" into a finite number of P-sign-invariant regions.

Projection phase Construction phase

%

"W Erika Abraham - Satisfiability Checking: Theory and Applications 24/ 41

Cylindrical algebraic decomposition (CAD)

A CAD for a set P of polynomials from Z[xy, ..., x,]
splits R into a finite number of P-sign-invariant regions.

Projection phase Construction phase
Polynomials P =P, C Z[x1,...,X,] Samples in R”
Polynomials P,—1 € Z[xy,...,Xn-1] Samples in R*!

!

Polynomials P, C Z[xj, x;] Samples in R?

Y

Polynomials P; C Z[x] Samples in R!

i Erika Abraham - Satisfiability Checking: Theory and Applications 24/ 41

Py={x-2+(-2~ Lx-y

"W Erika Abraham - Satisfiability Checking: Theory and Applications 25/41

Py={x-2+(-2~ Lx-y

projection

!

Pr={2x2-8x+7,x>—4x+3,...}

"W Erika Abraham - Satisfiability Checking: Theory and Applications 25/41

Py={x-2+(-2~ Lx-y

projection

Pi=(22—8x+7,% —dx+3,...) Z‘:’}ZS ——
1

>
>
x

"W Erika Abraham - Satisfiability Checking: Theory and Applications 25/41

Py={x-2+(-2~ Lx-y

projection
Zeros
= — —
Py ={2x* - 8x +7,x% 4x+3,...}—>0“D1 —0—0“—0—“0—0—>2 X

"W Erika Abraham - Satisfiability Checking: Theory and Applications 25/41

Py={(x-2+(y-27-1,x-y} PAREE

projection

zeros of P,[-/x]

!

Pr={2x2-8x+7,x>—4x+3,...}

Zeros
of P,

"W Erika Abraham - Satisfiability Checking: Theory and Applications 25/41

v o

Py={(r—27+ (-2 - l,x—y) o ﬁ
. : X

projection 2

L zeros of P,[-/x] ‘

zZeros
= —_ —_ e eee o e0e o

Pr={2x2-8x+7,x>—4x+3,...} o P, ’ X

"W Erika Abraham - Satisfiability Checking: Theory and Applications 25/41

Projection phase

Polynomials P, C Z[xy, x2]

Construction phase

olynomials Py C Z[x;]

"W Erika Abraham - Satisfiability Checking: Theory and Applications

Samples in R”

Samples in R*!

26/ 41

Projection phase Construction phase

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

000000OGOCGCOGONONOOOOS >

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

000000OGOCGCOGONONOOOOS >

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

0000000000000 0000000000000

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

00000000000000000000000000 —» 000

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

————. \\ | 4

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

————. \\ | 4

"W Erika Abraham - Satisfiability Checking: Theory and Applications 26/41

Projection phase Construction phase

o000 000 000000000 OCGOCOGFOGINODS

————. \\ | 4

MELY Erika Abraham - Satisfiability Checking: Theory and Applications 26/ 41

Projection phase Construction phase

"WML Erika Abraham - Satisfiability Checking: Theory and Applications 27/41

Projection phase Construction phase

"WML Erika Abraham - Satisfiability Checking: Theory and Applications 27/41

Projection phase Construction phase

o S1 S 83 S84 S5 Se S

"WML Erika Abraham - Satisfiability Checking: Theory and Applications 27/41

Projection phase Construction phase

o S1 S S3 S84 S5 Se S
~—
Explanation for unsatisfiability:

covering set S

0000000 OCGOCOGOIONOOS >

"WML Erika Abraham - Satisfiability Checking: Theory and Applications 27/41

Projection phase Construction phase

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering
polynomial selection

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering
polynomial selection

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering
polynomial selection

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering
polynomial selection

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering
polynomial selection

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering
polynomial selection

polynomial selection

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering
polynomial selection

polynomial selection

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering
polynomial selection

polynomial selection

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering sample point selection
polynomial selection

polynomial selection

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering sample point selection
polynomial selection

polynomial selection

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering sample point selection
polynomial selection lynomial selection

polynomial selection

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering sample point selection
polynomial selection lynomial selection

polynomial selection

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering sample point selection
polynomial selection lynomial selection

polynomial selection

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Projection phase Construction phase

variable ordering sample point selection
polynomial selection lynomial selection

polynomial selection

"W Erika Abraham - Satisfiability Checking: Theory and Applications 28/41

Solver QF _NRA sequential (10245) QF_NIA sequential (8593)
Correctly Total Time Correctly Total Time

solved time per instance solved time per instance
AProVE - - - 8273 8527.66 1.03
Cvc4 2694 150.24 0.05 8231 | 161418.04 19.61
ProB - - - 7557 | 13586.05 1.79
raSAT 0.3 8431 | 13576.52 1.61 7544 70228.9 9.31
raSAT 0.4 9024 | 11176.39 1.23 8017 | 159247.55 19.86
SMT-RAT 9026 | 51053.15 5.65 8443 6234.5 0.73
Yices 10019 | 61989.88 6.18 8451 8523.4 1.00
[Z3] 10056 | 24785.38 2.46 8566 27718.2 3.23

"W Erika Abraham - Satisfiability Checking: Theory and Applications 29/41

SMT applications

model checking
termination analysis
runtime verification

test case generation
controller synthesis
predicate abstraction
equivalence checking
scheduling

planning

deployment optimisation on the cloud
product design automation

Erika Abraham - Satisfiability Checking: Theory and Applications

30/ 41

Environment

Software

engine Solution

Logical
Problem problem
specification

"W Erika Abraham - Satisfiability Checking: Theory and Applications 31/41

Environment

Software

engine Solution

Logical
problem
specification

Problem

Encoding: SMT-LIB standard
elaborate encoding is extremely important!

"W Erika Abraham - Satisfiability Checking: Theory and Applications 31/41

Environment

Software

engine Solution

Logical
problem
specification

Problem

Encoding: SMT-LIB standard
elaborate encoding is extremely important!

SMT-LIB syntax — free solver choice

"W Erika Abraham - Satisfiability Checking: Theory and Applications 31/41

Bounded model checking for C/C++

Carnegie Mellon

S Bounded Model Checking ..
Homena for Software /

Aboit CBMC

CBMC is a Bounded Model Checker for C and C++ programs. It
supports C89, €99, most of C1l1 and most compiler extensions
provided by gcc and Visual Studio. It also supports SystemC using
Scoot. We have recently added experimental support for Java
Bytecode.

CBMC verifies array bounds (buffer overflows), pointer safety, excep-
tions and user-specified assertions. Furthermore, it can check C and
C++ for consistency with other languages, such as Verilog. The
verification is performed by unwinding the loops in the program and
passing the resulting equation to a decision procedure.

While CBMC is aimed for embedded software, it also supports dynamic memory allocation
using malloc and new. For questions about CBMC, contact Daniel Kroening.

CBMC is available for most flavours of Linux (pre-packaged on Debian, Ubuntu and Fedora),
Solaris 11, Windows and MacOS X. You should also read the CBEMC license.

CBMC comes with a buili-in solver for bit-vector formulas that is based on MiniSat. As an
alternative, CBMC has featured support for external SMT solvers since version 3.3. The
solvers we recommend are (in no particular order) Boolector, MathSAT, Yices 2 and Z3. Note
that these solvers need to be installed separately and have different licensing conditions.

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

i Erika Abraham - Satisfiability Checking: Theory and Applications 32/ 41

http://www.cprover.org/cbmc/

Bounded model checking for C/C++

Carnegie Mellon

S Bounded Model Checking ..
Homena for Software T /

AbTt CBMC Logical encoding of finite unsafe paths

CBMC is a Bounded Model Checker for C and C++ programs. It
supports C89, €99, most of C1l1 and most compiler extensions
provided by gcc and Visual Studio. It also supports SystemC using
Scoot. We have recently added experimental support for Java
Bytecode.

CBMC verifies array bounds (buffer overflows), pointer safety, excep-
tions and user-specified assertions. Furthermore, it can check C and
C++ for consistency with other languages, such as Verilog. The
verification is performed by unwinding the loops in the program and
passing the resulting equation to a decision procedure.

While CBMC is aimed for embedded software, it also supports dynamic memory allocation
using malloc and new. For questions about CBMC, contact Daniel Kroening.

CBMC is available for most flavours of Linux (pre-packaged on Debian, Ubuntu and Fedora),
Solaris 11, Windows and MacOS X. You should also read the CBEMC license.

CBMC comes with a buili-in solver for bit-vector formulas that is based on MiniSat. As an
alternative, CBMC has featured support for external SMT solvers since version 3.3. The
solvers we recommend are (in no particular order) Boolector, MathSAT, Yices 2 and Z3. Note
that these solvers need to be installed separately and have different licensing conditions.

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

i Erika Abraham - Satisfiability Checking: Theory and Applications 32/ 41

http://www.cprover.org/cbmc/

Bounded model checking for C/C++

Carnegie Mellon

S Bounded Model Checking ..
Homena for Software T /

AbTt CBMC Logical encoding of finite unsafe paths

CBMC is a Bounded Model Checker for C and C++ programs. It
supports C89, €99, most of C1l1 and most compiler extensions
provided by gcc and Visual Studio. It also supports SystemC using
Scool We have recently added experimental support for Java

verification is performed by unwinding the \oops in the program and
passing the resulting equation to a decision procedure.

While CBMC is aimed for embedded software, it also supports dynamic memory allocation
using malloc and new. For questions about CBMC, contact Daniel Kroening.

CBMC is available for most flavours of Linux (pre-packaged on Debian, Ubuntu and Fedora),
Solaris 11, Windows and MacOS X. You should also read the CBEMC license.

CBMC comes with a buili-in solver for bit-vector formulas that is based on MiniSat. As an
alternative, CBMC has featured support for external SMT solvers since version 3.3. The
solvers we recommend are (in no particular order) Boolector, MathSAT, Yices 2 and Z3. Note
that these solvers need to be installed separately and have different licensing conditions.

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

i Erika Abraham - Satisfiability Checking: Theory and Applications 32/ 41

http://www.cprover.org/cbmc/

Bounded model checking for C/C++

Carnegie Mellon

S Bounded Model Checking ..
Homena for Software T /

AbTt CBMC Logical encoding of finite unsafe paths

CBMC is a Bounded Model Checker for C and C++ programs. It
supports C89, €99, most of C1l1 and most compiler extensions
provided by gcc and Visual Studio. It also supports SystemC using
Scool We have recently added experimental support for Java

Encoding |dea Inlt(s()) A Trans(so, s1) A ... A Trans(si_1, sx) A Bad(sy, . . .

TONS and USer-Speciied asserions. FUMNeTTore, it can CHeck C and B i
C++ for consistency with other lanquaces. such as Verilog. C Wi, ~
verificatior)

passngn| Application examples:
whie col Error localisation and explanation
using ma . .

wmced EQuivalence checl'qng

Solaris 11 Test case generation

CBMC ca Worst-case execution time

alternative
solvers we
that these so\vers need to be mslal\ed separalely and have d\ﬁerem I\ceﬂsmg condmons

2 SKk)

As an

. Note

Source: D. Kroening. CBMC home page. http://www.cprover.org/cbmc/

i Erika Abraham - Satisfiability Checking: Theory and Applications 32/ 41

http://www.cprover.org/cbmc/

BMC for graph transformation systems

error
n2
flws

(a) Initial graph S (b) Forbidden pattern

Fig. 1. Part of the car platooning GTS [I]

Rule 1 L R

nq n2 nq{ a ny

Fig. 2. Rule 1 of the car platooning GTS [I]

Source: T. Isenberg, D. Steenken, and H. Wehrheim.
Bounded Model Checking of Graph Transformation Systems via SMT Solving.

In Proc. FMOODS/FORTE’13.

i Erika Abraham - Satisfiability Checking: Theory and Applications 33/41

BMC for graph transformation systems

(a) Initial graph S

error
n2
flws

(b) Forbidden pattern

Fig. 1. Part of the car platooning GTS [I]

Rule 1 L
® O

R
clllRe)

Fig. 2. Rule 1 of the car platooning GTS [I]

Source: T. Isenberg, D. Steenken, and H. Wehrheim.
Bounded Model Checking of Graph Transformation Systems via SMT Solving.

In Proc. FMOODS/FORTE’13.

N Erika Abraham - Satisfiability Checking: Theory and Applications

Encode initial and forbidden

state graphs and
the graph transformation rules

in first-order logic.

3

Apply
bounded model checking

33/41

APrROVE

Automated Program Veri fon Envir

Termination

Symbolic
Execution Complexity
Raskal ‘\
ph
Non Termination

Front-End Back-End

Source: T. Stroder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.
AProVE: Termination and memory safety of C programs (competition contribution).

In Proc. TACAS’15.
"W Erika Abraham - Satisfiability Checking: Theory and Applications 34/41

Term rewrite system

Termination

Automated Program Veri fon Envir

Symbolic
Execution Complexity
Haskell Graph
Non Termination

Front-End Back-End

Source: T. Stroder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.
AProVE: Termination and memory safety of C programs (competition contribution).

In Proc. TACAS’15.
"W Erika Abraham - Satisfiability Checking: Theory and Applications 34/41

Termination analysis for programs

APRDOVE Term rewrite system
Automated Program Verification Envir

\ Complexity
Non-Termination

Symbolic
Execution
Graph

Haskell

Front-End Back-End
Term rewrite system minus(,0) 7 M d0s) 0 @
minus(0,s(y)) — 0 (2) div(s(x). s(y)) — s(div(minus(z,y).s(y))) (5)
l minus(s(z),s(y)) — minus(z,y) (3)

Dependency pairs MINUS(s(x),s(y)) — MINUS(z,4) (6) DIV(s(x),s(y)) — MINUS(z,y) @)
DIV(s(x),s(y)) — DIV(minus(z,y).s(y)) (8)

l O O
. [DIV(s(w), 5()) — DIV(minus(z, y), 5()) (8)] [MINUS (s(),s(y)) = MINUS(r,) (6)]

Chains

DIV(s(x),5(y)) — MINUS(z,) (7)

Logical encoding for well-founded orders.

Source: T. Stroder, C. Aschermann, F. Frohn, J. Hensel, J. Giesl.
AProVE: Termination and memory safety of C programs (competition contribution).

In Proc. TACAS15.
i Erika Abraham - Satisfiability Checking: Theory and Applications 34/ 41

Properties: linear temporal logics enriched with first-order theories
Method: SMT solving + classical monitoring

Specification w

Synthesis

System

Maonitor

Observation

Verdict

evaluation

Vaerdict

Fig. 1 Schematic overview of the monitoring approach

Source: N. Decker, M. Leucker, D. Thoma.
Monitoring modulo theories.
International Journal on Software Tools for Technology Transfer, 18(2):205-225, April 2016.
"W Erika Abraham - Satisfiability Checking: Theory and Applications 35/41

_ 40p* +20pq + 6p + 3q
T 68p2 +34pq + 34¢2 + 34p + 17g

Property

- Plot of Regions
- User-defined Regions

Source: C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P. Katoen, E. Abraham.
PROPhESY: A probabilistic parameter synthesis tool.

In Proc. of CAV’15.
"W Erika Abraham - Satisfiability Checking: Theory and Applications 36/41

dReach is a tool for safety verfication of hybrid systems.

DREAL DREACH BENCHMARKS

PUBLICATION

DOWNLOAD TRYONLINE PEOPLE

It answers questions of the type: Can a hybrid system run into an unsafe region of its state space? This question can be encoded to SMT formulas,

and answered by our SMT solver. dReach is able to handle genral hyrbid systems with nonlincar differential equations and complex discrete

mode-changes.

Hybrid Sys
(drh

stem Model
(.drh)

dReach

Unrollo

ing bound k

BMC
Module

| sMT2
Formula

— SAT/UNSAT

Source: D. Bryce, J. Sun, P. Zuliani, Q. Wang, S. Gao, F. Shmarov, S. Kong, W. Chen, Z. Tavares.

dReach home page. http://dreal.github.io/dReach/

"W Erika Abraham - Satisfiability Checking: Theory and Applications

37/41

http://dreal.github.io/dReach/

take . recharge x T | recharge

recharge x §
Start

Figure 1: A GEOMETRIC ROVERS example instance, showing the
starting and goal locations of the rover, areas where tasks can be
performed (blue) and obstacles (orange) and a plan solving the task
(green). The red box indicates the bounds of the environment.

Source: E. Scala, M. Ramirez, P. Haslum, S. Thiebaux.
Numeric planning with disjunctive global constraints via SMT.

In Proc. of ICASP’16.
"W Erika Abraham - Satisfiability Checking: Theory and Applications 38/41

Deployment optimisation on the cloud

Location (e.g, VMs, PCs, ...)

Depoloyable Components
______ —_ — - T T = _
v{p frontend [] "P- backend | \ /c_S__!g_rg_e_:[.____ c3large2
/ 4 < | User Constraints RAM: 3750] |
\ HTTP_Load_Balancer \ \ Cost: 105 Cost: 105 \
mysql \ |
'W" 2000 c3 large 3 <3 xlarge 1
\wp backend mvsql \ Arge -
MySQL \ RAM: 3750 RAWM: 7000]
/
[Cost: 105] Cost: 210
WnrdPress -~ \ : Vi
—_ ~
AN - _ _ - —_—__ — = = -
€3 large 1
wp_backend|
—C
®
S WordPress 1....
3 xlarge 1 3 large 2
1)
wp_frontend] wp_backend, | iwp_backend mm'! ’"““l
E =3
m =3 LY >
HTTP_Load Balancer, 1 WordPress_2 TySQL 2
<3 large 3
iwp_backend mysql
*® =2
WordPress_3

Source: E. Abraham, F. Corzilius, E. Broch Johnsen, G. Kremer, J. Mauro.

Zephyrus2: On the fly deployment optimization using SMT and CP technologies.

Submitted to SETTA'16.
N Erika Abraham - Satisfiability Checking: Theory and Applications

39/41

Resource 1, availability = 3
3 -, - -

time

0 T T T time

Demand on each resource —T

Figure 1: An example of RCPSP (Liess and Michelon 2008)

Source: C. Ansotegui, M. Bofill, M. Palahi, J. Suy, M. Villaret.
Satisfiability modulo theories: An efficient approach for the resource-constrained project
scheduling problem.

Proc. of SARA'11.
"W Erika Abraham - Satisfiability Checking: Theory and Applications

40/41

Upcoming research directions in SMT solving

Improve usability:

m User-friendly models

m Dedicated SMT solvers
Increase scalability:

m Performance optimisation (better lemmas, heuristics, cache
behaviour, ...)

m Novel combination of decision procedures
m Parallelisation
Extend functionality:
m Unsatisfiable cores, proofs, interpolants
m Quantified arithmetic formulas
m Linear and non-linear (global) optimisation

i Erika Abraham - Satisfiability Checking: Theory and Applications 41/41

