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Abstract. The identification of business process models within large model col-
lections poses a significant challenge. Process querying offers a solution by se-
lecting models that meet specific characteristics, utilizing queries based on behav-
ioral relations. These relations, which include conflict, co-occurrence, causality,
and concurrency (collectively known as the 4C Spectrum), describe the poten-
tial interactions between tasks within process models during execution. How-
ever, existing approaches to compute these behavioral relations are inefficient for
models with numerous execution traces, often requiring extensive time. This pa-
per introduces a set of algorithms, termed “Behavioral Relation Computations”
(in short BeRelCo), capable of identifying all 4C Spectrum behavioral relations
within acyclic sound free-choice workflow nets with quadratic time complexity
O(P2+T 2). Our experiments demonstrate significant benefits, particularly for
process models characterized by many execution traces.
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1 Introduction

Business process management (BPM) is an interdisciplinary domain that integrates
business and computer science principles, focusing on the analysis and improvement
of business process models. These models act as blueprints, describing task sequences,
dependencies, and decision points to achieve business objectives [6]. Established mod-
eling languages, such as the Business Process Model and Notation (BPMN), enable or-
ganizations to articulate their processes comprehensively. Typically stored in extensive
repositories, identifying process models presents a significant challenge when they are
to fulfill certain characteristics. For instance, a business analyst searching for a model
that concurrently executes payments and deliveries, subsequent to an order, would face
the task of manually reviewing each model in the absence of IT support.

Process queries enable businesses to systematically search through their process
models in repositories, identifying models that meet specific criteria [14]. The core
of process queries lies in the exploration of behavioral relations [15]. These relations
reveal how tasks within a process model interact, indicating whether tasks are mutually

https://orcid.org/0000-0001-9602-3482
https://orcid.org/0009-0008-1983-0035
https://orcid.org/0000-0002-5673-2812


2 TM. Prinz et al.

exclusive, co-occur, cause one another, or can be executed concurrently. Polyvyanyy et
al. [15] introduced a comprehensive set of these behavioral relations, known as the 4C
Spectrum. This spectrum uncovers the fundamental relations of conflict, co-occurrence,
causality, and concurrency, showcasing their various manifestations across different
execution traces of process models. The 4C Spectrum is aligned with other established
behavioral relation frameworks in literature, such as the (causal) behavioral profile [21,
22], enhancing its validity and application in the field of BPM.

The behavioral relations within the 4C Spectrum are binary, indicating that the size
of each relation scales quadratically with the number of nodes in a process model.
Current detection techniques for these relations, however, tend to require exponential
time in the worst case. Although it seems acceptable to derive the behavioral relations
for a single process model in seconds, indexing and querying process models from
huge repositories is difficult to accomplish with such computationally expensive al-
gorithms [10], especially from an ecological perspective. Polyvyanyy et al. [15] laid
the computational groundwork for some of these relations, leveraging concepts such as
reachability and the covering problem. Similarly, Wolf [23] linked most behavioral re-
lations back to the reachability problem. Yet, the general reachability problem for Petri
nets falls within the NONELEMENTARY complexity class [3], posing significant computa-
tional challenges. Ha and Prinz [10] explored these relations for acyclic sound workflow
graphs, utilizing a Single-Entry Single-Exit (SESE) decomposition into fragments [19]
(similarly to Weidlich et al. [22]). This approach uses transitive rules but struggles with
unstructured process model fragments, known as “rigids“ [19], where state-space explo-
ration — a process with exponential time complexity — becomes necessary. The cur-
rent gap is the absence of an algorithm capable of efficiently computing all behavioral
relations for unstructured fragments in low polynomial (i. e., quadratic to bi-quadratic)
time. Despite these challenges, understanding behavioral relations is also crucial for
analyzing process similarity [11] and checking compliance with business rules [13].

This paper introduces a set of algorithms, termed Behavioral Relation Computations
(in short BeRelCo), which are designed for process models that can be represented as
acyclic sound free-choice workflow nets. Soundness is a minimal quality correctness
criterion [5], whereas free-choiceness increases the alignment of workflow nets to in-
dustrial process languages [8]. BeRelCo is capable of computing all behavioral relations
within the 4C Spectrum with a quadratic time complexity, O(N2), where N represents
the number of nodes. Experimental results from two datasets demonstrate the compu-
tational advantages of BeRelCo, particularly when numerous different execution traces
are possible. For both datasets, all pairwise relations were computed in less than 1 sec-
ond, with some instances experiencing a speed-up factor exceeding 1000. The approach
is also effective for models exhibiting inclusive behavior. While the current focus is on
acyclic process models, we are convinced that extending the methodology to cyclic
models through loop decomposition [16] — a method that converts a cyclic model into
a set of acyclic models with equivalent behavior — is feasible.

This paper is organized as follows: Section 2 introduces basic concepts necessary
for understanding the rest of the work. This is followed by a description of the behav-
ioral relations of the 4C Spectrum in acyclic nets in Sect. 3. We then derive algorithms
for these relations, showcasing our methodological contributions in Sect. 4. Section 5
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briefly discusses how these algorithms can be extended to inclusive behavior. Related
work is investigated in Sect. 6. In Sect. 7, an evaluation of the algorithms demonstrates
their effectiveness and computational benefits. The paper concludes in Sect. 8 with a
reflection on the implications of our work.

2 Preliminaries

This paper builds upon well-established definitions of Petri and workflow nets.

Definition 1 (Petri net). A (Petri) net is a triple (P,T,F) with P and T are finite, dis-
joint sets of places and transitions and F ⊆ (P×T)∪(T ×P) is the flow relation. ⌟

The union P∪T of a net N = (P,T,F) can be interpreted as nodes and F as edges
between those nodes. For x ∈ P∪T , ●x = {p ∣ (p,x) ∈ F} is the preset of x (all directly
preceding nodes) and x● = {s ∣ (x,s) ∈ F} is the postset of x (all directly succeeding
nodes). Each node in ●x is an input of x and each node in x● is an output of x. The
preset and postset of a set of nodes X ⊆P∪T is defined as ●X =⋃x∈X ●x and X●=⋃x∈X x●,
respectively. A path (n1, . . . ,nm) is a sequence of nodes n1, . . . ,nm ∈ P∪T with m ≥ 1
and ∀i ∈ {1, . . . ,m− 1}∶ ni ∈ ●ni+1. Note that places and transitions alternate on paths.
If all nodes of a path are pairwise different, the path is acyclic; otherwise, it is cyclic.
PathsN(x,y) denotes the set of all paths between nodes x and y in N, where x,y ∈P∪T . N
is acyclic if all its paths are acyclic. Each net in this paper is restricted to be simple free-
choice: ∀p ∈P, ∣p●∣> 1∶ ●(p●)= {p} [8]. In the nets shown here, circles represent places,
rectangles transitions and directed edges represent flows (see Fig. 1 as an example).

Definition 2 (Workflow and AFW-net). A workflow net WN = (P,T,F,s, f ) is a net
(P,T,F) with s, f ∈ P, ●s = ∅, and f ● = ∅. s is the source and f is the sink of WN. All
nodes are on a path from s to f . If WN is acyclic and free-choice, we call it AFW-net. ⌟

Figure 1 visualizes a workflow net. Markings of workflow nets describe states,
which specify the number of tokens at each place:

Definition 3 (Marking). A marking of a workflow net WN = (P,T,F,s, f ) is a total
mapping M∶ P↦N0 that assigns a natural number of tokens to each place of P. M(p)= 1
means that place p ∈ P carries one token in marking M. ⌟

The initial marking Ms is a marking where only the source s has a token. The ter-
minal marking M f is a marking where only the sink f has a token. Transitions whose
input places all have tokens are enabled in a marking and can be fired, leading to the
workflow net’s semantics:

Definition 4 (Semantics). Let WN = (P,T,F,s, f ) be a workflow net with a marking
M. A transition t ∈ T is enabled in M iff every place p ∈ ●t contains at least one token
in M, ∀p ∈ ●t ∶ M(p) ≥ 1. If t is enabled in M, then t can occur (“fire”), which leads to a
step from M to M′ via t, denoted as M

t
→M′, with

M′(p) =M(p) −
⎧⎪⎪
⎨
⎪⎪⎩

1, p ∈ ●t
0, else

+

⎧⎪⎪
⎨
⎪⎪⎩

1, p ∈ t●
0, else.

⌟
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Fig. 1. A graphical example of a Petri net.

I. e., in a step via t, t “consumes” one token from all its input places and “produces”
one token for all its output places. Stepwise firings of transitions lead to chains of fired
transitions, which describe the behavior of a net as occurrence sequences:

Definition 5 (Occurrence Sequences and Runs). Let WN = (P,T,F,s, f ) be a work-
flow net with a marking M0. A sequence of transitions σ = ⟨t1, . . . ,tn⟩, n ∈N0, t1, . . . ,tn ∈
T , is an occurrence sequence of M0 iff there is a sequence of markings M0,M1, . . . ,Mn

such that Mi−1
ti
→Mi holds for each i ∈ {1, . . . ,n}. It can be said that σ leads from M0

to Mn. A place p ∈ P occurs in σ , depicted as p ∈ σ , iff the steps M0
t1
→M1

t2
→ . . .

tn
→Mn

contain a marking Mi, i ∈ {1, . . . ,n}, with Mi(p) ≥ 1. σ is a run iff σ leads from the
initial marking Ms to the terminal marking M f of WN. ⌟

A marking M′ is reachable from a marking M (denoted M→∗M′) iff there is an
occurrence sequence σ of M that leads to M′.

Definition 6 (Soundness). A workflow net WN = (P,T,F,s, f ) with its initial marking
Ms = {s} and its terminal marking M f = { f} is sound iff

(1) ∀M, Ms→
∗M∶ M→∗M f ,

(2) ∀M, Ms→
∗M∶ (M( f ) ≥ 1 Ô⇒ M =M f ), and

(3) there is no dead transition in WN: ∀t ∈ T ∃M,M′∶ Ms→
∗M

t
→M′. [1] ⌟

This paper focuses on sound AFW-nets.

Definition 7 (Run Net). A net π = (PR,TR,FR) is a run net of a sound AFW-net N =
(P,T,F,s, f ) and a run R iff

PR = {p ∈ P∶ p ∈ R} ∧ TR = {t ∈ T ∶t ∈ R} ∧ FR = {(x,y) ∈ F ∶ x ∈ (PR∪TR) ∧ y ∈ (PR∪TR)}

n ∈ R occurs in π , depicted as n ∈ π . Π(N) depicts the set of all run nets of N. Π(x) =
{π ∈Π(N)∶x ∈ π} is the set of all run nets of N, in which the node x occurs. ⌟

Figure 2 illustrates one possible run net of the net in Fig. 1. The definition of run nets
in this work deviates from that of occurrence nets proposed by Polyvyanyy et al. [15],
as it is simplified for the context of sound AFW-nets, wherein each place and transition
occurs no more than once. Such run nets are analogous to instance subgraphs as defined
in the workflow graph theory [18].
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Fig. 2. A run net of the net in Fig. 1.

3 Behavioral Relations

Investigating the behavior of an AFW-net follows two perspectives: (1) The considera-
tion of a single run net π , or (2) the consideration of all its run nets Π . For (1), it can
be examined (a) if a node occurs in π and (b) if two nodes that occur in π are causal
or concurrent to each other. In Fig. 1, t3 can be concurrent to t4 and t1 is causal for t8.
For (2), the consideration of all run nets contains two sub-perspectives: Existential and
total behavior between two nodes. Examples of existential behavior are can co-occur
(there is a run net, in which two nodes occur) and can conflict (there is a run net, in
which one node occurs but the other does not). In Fig. 1, t3 can conflict with t6 as there
is a run net, in which t3 occurs but not t6. t1 and t6 can co-occur as there is a run net,
in which both occur. Examples of total behavior are total co-occur (two nodes occur
always together) and total conflict (two nodes never occur together). In Fig. 1, t5 and t6
are in total conflict, and t1 and t3 are in total co-occur relation.

Polyvyanyy et al. [15] introduced the 4C Spectrum to describe all nuances of con-
flict, co-occurrence, causality, and concurrency within process models. Originally, these
behavioral relations were defined solely in terms of transitions. However, analyzing the
interactions between places — specifically, whether two places can simultaneously con-
tain tokens in the same marking — is also crucial for understanding the full dynamics
of process models. Therefore, this work extends the examination of behavioral relations
to include all node pairs, encompassing both places and transitions.

If two nodes occur in a run net, they are either in a causal or concurrency relation
[15]. These basic relations are only defined over a single run net (perspective (1)):

Definition 8 (Concurrency and Causality). Let N = (P,T,F,s, f ) be a sound AFW-net
with one of its run nets π ∈Π(N).
Two nodes x,y ∈ P∪T are concurrent in π (depicted as x ∥π y) iff

x,y ∈ π ∧ Pathsπ(x,y) =∅ ∧ Pathsπ(y,x) =∅.

x is causal for y in π , depicted as x causalπ y, iff

x,y ∈ π ∧ Pathsπ(x,y) /=∅ [15]. ⌟

Considering the set of all run nets of a net (perspective (2)), causality and con-
currency between two nodes can manifest in many variants within the 4C Spectrum.
In sound AFW-nets, each node can occur at most once within a run. Consequently,
these many variants are simplified to existential and total causality/concurrency. Ex-
istential causality/concurrency implies that there is at least one run net in which the
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two nodes occur and are in a causal or concurrency relation, respectively. Total causal-
ity/concurrency indicates that, in every run net where the two nodes occur, they maintain
a causal or concurrency relation. Can co-occur and can conflict are defined over the ex-
istence of at least one run net. In sound AFW-nets, every pair of two nodes x and y is
exactly in one of the following four relations for all run nets [15]: (1) total conflict;
(2) total co-occur; (3) requires (each run net that contains x also contains y, however,
there are run nets with y but not with x); and (4) independent (there are run nets con-
taining either x or y, but also run nets, which contain both). In Fig. 1, t6 requires t3 and
t6 is independent from t11.

Based on occurrence, concurrency and causality, the following definition summa-
rizes all behavioral relations resulting from sound AFW-nets [10]. Please be aware that
existential/total concurrency/causality is only defined for run nets, in which two nodes
in relation occur, thus “total” implies “existential” [15]:

Definition 9 (Behavioral Relations). Let N = (P,T,F,s, f ) be a sound AFW-net.
The behavioral relations between two different nodes x,y ∈ P∪T are [10]:

x canConflict y ⇐⇒ Π(x)∖Π(y) /=∅

x canCooccur y ⇐⇒ Π(x)∩Π(y) /=∅

x totalConflict y ⇐⇒ x canConflict y ∧ y canConflict x ∧ x canCooccur y

x totalCooccur y ⇐⇒ x canConflict y ∧ y canConflict x ∧ x canCooccur y

x requires y ⇐⇒ x canConflict y ∧ y canConflict x ∧ x canCooccur y

x independent y ⇐⇒ x canConflict y ∧ y canConflict x ∧ x canCooccur y

x concurrent∃ y ⇐⇒ ∃π ∈Π(x)∩Π(y)∶ x ∥π y

x concurrent∀ y ⇐⇒ ∀π ∈Π(x)∩Π(y)∶ x ∥π y ∧ x concurrent∃ y

x causal∃ y ⇐⇒ ∃π ∈Π(x)∩Π(y)∶ x causalπ y

x causal∀ y ⇐⇒ ∀π ∈Π(x)∩Π(y)∶ x causalπ y ∧ x causal∃ y ⌟

4 Structural Computation of the Behavioral Relations

The aim of this paper is to define algorithms that avoid the need for discovery-like com-
putation, which currently exhibits exponential runtime in analyzing AFW-nets. This
section examines the structural properties of sound AFW-nets to ultimately compute all
behavioral relations between pairs of nodes within a quadratic time complexity.

4.1 Existential Concurrency and Total Concurrency

Prinz et al. [17] have introduced an algorithm with quadratic time complexity for de-
tecting the concurrency relation in sound acyclic free-choice workflow nets. Instead of
defining concurrency over run nets as in this work, their definition utilizes reachabil-
ity: Two places are concurrent if there is a reachable marking from the initial marking,
in which both places carry tokens. Concurrency between a place and a transition or
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two transitions is defined similarly. In Theorem 3 on page 140 of [17], they show that
concurrency in sound AFW-nets requires the absence of paths between the nodes in re-
lation. As a consequence, two nodes can only be in a concurrency relation if they do not
have a path to each other in a run net as well. Therefore, their definition of concurrency
aligns with what is termed existential concurrency in this work, thereby enabling the
relation’s determination between all nodes in a quadratic time:

Proposition 1 (Existential Concurrency). Let N = (P,T,F,s, f ) be a sound AFW-net.
concurrent∃ can be computed in a quadratic time complexity O(∣P∣2+ ∣T ∣2) [17]. ⊓⊔

Concurrency in Def. 8 is defined over the absence of paths between two nodes x
and y in at least one run net. Fortunately, as mentioned before, soundness restricts and
simplifies concurrency: If x and y are in an existential concurrency relation, then there
cannot be a path between x and y and vice versa in the AFW-net:

Theorem 1. Let N = (P,T,F,s, f ) be a sound AFW-net with two nodes x,y ∈P∪T , x /= y.

x concurrent∃ y Ô⇒ PathsN(x,y) =∅ ∧ PathsN(y,x) =∅ (1)

PathsN(x,y) /=∅ ∨ PathsN(y,x) /=∅ Ô⇒ x concurrent∃ y (2)

Proof. See Prinz et al. [17] (Cor. 4 (p. 141) for (1) and Theorem 3 (pp. 140–141) for (2)). ⊓⊔

Please note that Theorem 1 argues over paths in an AFW-net (N) and not over paths
in a run net (π), as it is done in Def. 8 of concurrency. Of course, an AFW-net without
paths between two nodes x and y cannot have any paths between x and y in a run net. As
a consequence, each run net, in which such x and y occur, cannot have a path between
x and y and vice versa. Therefore, x and y are always concurrent if they occur (Def. 8).
This corresponds to the definition of total concurrency in Def. 9. In summary, existential
concurrency is equal to total concurrency:

Theorem 2 (Existential is Total Concurrency). Let N = (P,T,F,s, f ) be a sound AFW-
net and x,y ∈ P∪T two of its nodes.

x concurrent∃ y ⇐⇒ x concurrent∀ y ⌟

Proof. Of course, x concurrent∀ y Ô⇒ x concurrent∃ y directly follows from Def. 9. For this
reason, this proof focuses on x concurrent∃ y Ô⇒ x concurrent∀ y.

The preconditions by Theorem 2 are a sound AFW-net N = (P,T,F,s, f ) and two nodes
x,y ∈ P∪T . The theorem demands for the validity of x concurrent∃ y. By x concurrent∃ y and
Theorem 1, there is no path between x and y as well as between y and x in the AFW-net N:

PathsN(x,y) =∅ ∧ PathsN(y,x) =∅
From this, it follows:

∀π ∈Π(x)∩Π(y)∶ Pathsπ(x,y) =∅ ∧ Pathsπ(y,x) =∅ ∧ x concurrent∃ y
Def. 8⇐⇒ ∀π ∈Π(x)∩Π(y)∶ x ∥π y ∧ x concurrent∃ y

Following this and Def. 9: x concurrent∀ y ✓ ⊓⊔
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4.2 Existential Causality and Total Causality

Existential causality requires a path in the AFW-net between two nodes in relation, as
Def. 8 needs a path in the run net [9,10]. Since the AFW-nets considered here are sound
and free-choice, the existence of a path between x and y implies the existence of a run
net, in which x has a path to y, i. e., x and y are in an existential causality relation:

Theorem 3 (Existential Causality). Let N = (P,T,F,s, f ) be a sound AFW-net and
x,y ∈ P∪T two of its nodes.

x causal∃ y ⇐⇒ PathsN(x,y) /=∅ ⌟

Proof. See the contraposition of Lemma 4.2 in Ha and Prinz [10]. ⊓⊔

A node in an acyclic graph has (1) a path to itself and (2) only paths to nodes to
which some outputs has a path too. A reverse topological order ensures that a node is
only processed after all its output nodes have been addressed (the reverse topological
order of the net in Fig. 1 is (p11, t11, t10, p10, t9, p8, p7, t8, p4, t3, p2, p6, t7, p5, t4, t5,
t6, p3, t1, p1)). For this reason, a check for all nodes, if there is a path between them
in an ASW-net, can be performed in O(∣P∣+ ∣T ∣+ ∣F ∣) [2]. In the worst case, ∣F ∣ can be
quadratic to ∣P∣+ ∣T ∣ according to Def. 1. Thus, finding all pairs in existential causality
relation can be achieved in a quadratic time complexity of O((∣P∣+ ∣T ∣+(∣P∣+ ∣T ∣)2) =
O(∣P∣2+ ∣T ∣2).

If a node x is existential causal to a node y, then there is a path between x and y in
the AFW-net by Theorem 3. Following Theorem 1 of existential concurrency, x and y
can never be in a concurrency relation as there is a path between x and y in the AFW-
net. As a consequence, if x and y are existential causal, then x and y are not existential
concurrent. Polyvyanyy et al. [15] state that if two nodes occur in a run net, they are
either in a concurrency or causality relation. Therefore, x and y must be in a causality
relation for all run nets, in which both occur. This fits the definition of total causality in
Def. 9. In summary, existential causality implies total causality:

Theorem 4 (Existential is Total Causality). Let N = (P,T,F,s, f ) be a sound AFW-net
and x,y ∈ P∪T two of its nodes.

x causal∃ y ⇐⇒ x causal∀ y ⌟

Proof. Of course, x causal∀ y Ô⇒ x causal∃ y directly follows from Def. 9. For this reason,
this proof focuses on x causal∃ y Ô⇒ x causal∀ y.

By Theorem 4, we have a sound AFW-net N = (P,T,F,s, f ) with two nodes x,y ∈ P∪T . The
theorem requires x causal∃ y. Following from x causal∃ y and Theorem 3, there is a path between
x and y in the AFW-net N:

PathsN(x,y) /=∅ (3)
Thus, x and y cannot be in an existential concurrency relation according to Theorem 1:

x concurrent∃ y
Def. 9⇐⇒ ∀π ∈Π(x)∩Π(y)∶ x∦π y
Def. 8⇐⇒ ∀π ∈Π(x)∩Π(y)∶ Pathsπ(x,y) /=∅ ∨ Pathsπ(y,x) /=∅

As N is acyclic and given (3), there cannot be a path between y and x in N. Thus, Pathsπ(y,x) =
∅ must hold, resulting in Pathsπ(y,x) /= ∅ to be invalid. Finally, this leads to ∀π ∈ Π(x) ∩
Π(y)∶ Pathsπ(x,y) /=∅ and x causal∃ y. So for all run nets π , in which x and y occur, x causalπ y
by Def. 8 and x causal∃ y. This meets Def. 9 of x causal∀ y.✓ ⊓⊔
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4.3 Can Co-occur and Can Conflict

In a sound AFW-net, if two nodes occur in a run net, then always in a causal or concur-
rency relation [15], i. e., if two nodes are neither causal nor concurrent, they can never
occur together in a run net. This leads to can co-occur:

Proposition 2 (Can Co-occur). Let N = (P,T,F,s, f ) be a sound AFW-net and two
nodes x,y ∈ P∪T . Following Polyvyanyy et al. [15], it holds:

x canCooccur y ⇐⇒ x causal∃ y ∨ y causal∃ x ∨ x concurrent∃ y. ⊓⊔

The derivation of the can conflict relation is not obvious. Instead of deriving it
directly, its negation is derived: canConflict. By Def. 9, x canConflict y is defined as
Π(x)∖Π(y) = ∅ for a sound AFW-net N, which is equal to Π(x) ⊆Π(y). Therefore,
if there is a run net π with x ∈ π , then y ∈ π; i. e., x occurs always with y. Soundness of
N restricts x canConflict y because there is always a run net, which contains x:

Proposition 3. Let N = (P,T,F,s, f ) be an AFW-net.

N sound
Def. 6
Ô⇒ ∀x ∈ P∪T ∶ Π(x) /=∅ ⊓⊔

Resulting from Prop. 3, x canConflict y implies x canCooccur y:

Proposition 4. Let N = (P,T,F,s, f ) be a sound AFW-net and x,y ∈ P∪T are two of its
nodes. It follows from Prop. 3 :

x canConflict y Ô⇒ x canCooccur y ⊓⊔

From Prop. 3, it holds that Π(x) /= ∅ and Π(y) /= ∅ and x canConflict y is equal to
Π(x) ⊆Π(y). For this reason, a node x can only be in canConflict relation with nodes,
which occur together with x in at least one run net. In Fig. 1, p7 cannot conflict with t8
but not with t6.

Again, if a node x cannot conflict with a node y, then in each run net, in which x
occurs, y occurs as well. y may appear before, after, without or concurrent to x. As a
first step of the derivation, a special case of cannot conflict is considered: All run nets,
in which x and y occur and x is causal to y, i. e., x canConflict y and x causal∃ y. This
special case is called the trigger relation:

Definition 10 (Trigger). Let N = (P,T,F,s, f ) be a sound AFW-net and two nodes x,y ∈
P∪T . x triggers y iff x = y ∨ (x canConflict y ∧ x causal∃ y). ⌟

In Fig. 1, t7 triggers t9 but not t3. By x = y, the trigger relation is reflexive. From
causality and Theorem 3 follows that between two nodes x and y in trigger relation,
there is a path from x to y in the AFW-net. Furthermore, in each run net where x occurs,
there must be a path from x to y. However, it is not necessary for this to be the same path
across different run nets. Whether there is always a path between two nodes x and y in
every run net in which they occur can be derived by three transitive rules for a sound
AFW-net N = (P,T,F,s, f ):
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Algorithm 1 Determination of the triggers relation as an adjacency list R for all nodes
of a sound AFW-net N = (P,T,F,s, f ).
1: function COMPUTETRIGGER(N = (P,T,F,s, f ))
2: // Initialize R and a list L of nodes to compute.
3: R←∅
4: L← P∪T in reverse topological order starting from f
5: for all x ∈ L do
6: // All nodes in x’s postset were processed.
7: if x ∈ T then
8: R(x)← {x} ∪ ⋃o∈x●R(o) // R(x) represents all nodes triggered by x
9: else

10: R(x)← {x} ∪ ⋂o∈x●R(o)
11: return R

(1) x = y: Follows directly from Def. 10.
(2) x ∈ T : If one of x’s outputs o triggers y, then in each π , where o occurs, y occurs as

well and there is a path from o to y in π . If x occurs in a π , then o ∈ π (since x ∈ T )
and there is the path (x,o) in π . Thus, if x occurs in a π , then y ∈ π with a path from
x via o to y in π . In summary, if x triggers y, then there must be at least one output
o of x, which triggers y.

(3) x ∈P: Since the net is free-choice, x represents the sink (∣x●∣ = 0), a simple sequence
(∣x●∣ = 1) or a decision (∣x●∣ ≥ 2). The sink is not of interest, as it can only trigger
itself. Thus, we consider the case ∣x●∣≥ 1. If there would be a transition o ∈ x●, which
does not trigger y, there would be a run net with o but not with y or without a path
from o to y. If x occurs in a π and o is fired, then π must not contain y or there is
no path from x to y in π , i. e., x does not trigger y. Therefore, only if each o ∈ x●
triggers y, x triggers y as well.

The next equation summarizes the transitive rules:

x triggers y ⇐⇒ x = y ∨

x ∈ T ∧ ∃o ∈ x●∶ o triggers y ∨ (4)
x ∈ P ∧ ∀o ∈ x●∶ o triggers y

These three transitive rules are utilized to formulate Alg. 1, which is designed for de-
tecting the trigger relation. The algorithm organizes this relation into an adjacency list
R and iteratively processes the net in reverse topological order, beginning with the net’s
sink (line 4). This sequential processing in reverse order ensures that a node is only
processed after all its output nodes have been addressed. If a node x is processed, either
it is handled as a transition (line 8) or place (line 10). In both cases, x is added to R(x)
following the transitive rule x = x. If x ∈ T , x triggers all nodes that are triggered from
x’s output places, following the transitive rule x ∈ T ∧ ∃o ∈ x●∶ o triggers y. Otherwise,
if x ∈ P, x triggers all nodes that are triggered from all x’s output transitions, following
the transitive rule x ∈ P ∧ ∀o ∈ x●∶ o triggers y.

Time complexity: The topological ordering can be achieved in O(∣P∣+ ∣T ∣+ ∣F ∣) [2].
Given that each node, along with all its postset nodes, is considered exactly once, the



Recognizing Relationships 11

algorithm is guaranteed to terminate. According to Def. 1, the worst-case scenario for
the number of flows is quadratic regarding the number of nodes. Consequently, this
establishes that the algorithm operates with a quadratic time complexity of O(∣P∣2 +
∣T ∣2).

As mentioned before, the trigger relation is a special case of canConflict, in which
the nodes in relation require existential/total causality. This special case helps to de-
rive the general case of canConflict, i. e., in which the nodes in relation do not require
causality: If a node x cannot conflict with a node y in general, there is not the necessity
for a path from x to y. However, if x and y occur in a run net, then always with a path
from the source s of the AFW-net N to x and y, respectively.

For an imaginative visualization, consider the following metaphor: Imagine a moun-
tain summit representing a node x. From your starting point, the source s, several paths
W lead to this summit. If, on each of these paths, there is a trigger z capable of causing
an avalanche in the valley (a node y), then reaching the summit (x) invariably results
in an avalanche in the valley (y). Conversely, if at least one path exists without such a
trigger, it is possible to reach the summit without causing an avalanche in the valley (y).
The following theorem uses a similar approach to derive canConflict:

Theorem 5 (Cannot Conflict). Let N = (P,T,F,s, f ) be a sound AFW-net with two
nodes x,y ∈ P∪T , x /= y.

x canConflict y ⇐⇒ ∀W ∈ Paths(s,x) ∃z ∈W ∶ z triggers y ⌟

Proof (Theorem 5). The theorem requires a sound AWF-net N = (P,T,F,s, f ) with two nodes
x,y ∈ P∪T , x /= y. The proof considers both directions:

∀W ∈ Paths(s,x) ∃z ∈W ∶ z triggers y Ô⇒ x canConflict y. By Prop. 3, Π(x) /=∅. Let π ∈Π(x)
be such a run net. Since x ∈ π , there is a path W ∈ Pathsπ(s,x) from the source s to x in π .
Furthermore, for all such paths W , there exists a z ∈W , z triggers y. As a consequence, y ∈ π

by Def. 10. For this reason:
Π(x) ⊆Π(y) ⇐⇒ x canConflict y ✓

x canConflict y Ô⇒ ∀W ∈ Paths(s,x) ∃z ∈W ∶ z triggers y. Proof by contradiction:
x canConflict y ∧ ∃W ∈ Paths(s,x) ∀z ∈W ∶ z triggers y (5)

Let W be such a path from the source s to x, on which no node triggers y. Therefore,
x triggers y and y ∉W . Since x triggers y, there is a path W ′ ∈ Paths(s, f ) from s to the sink
f with ∀z ∈W ′∶ z triggers y. We construct a run net π that is based on the path W ′. If further
places and transitions must be added to construct π , which are not on path W ′, we add only
places p ∈ P with p triggers y following the transitive rules (4) of triggers. Since no node is
added to π , which triggers y, y ∉ π . Since x ∈W ′, x ∈ π . It holds by Def. 9:

Π(x)∖Π(y) /=∅ ⇐⇒ x canConflict y
This contradicts with (5). ☇ Therefore, the original statement must hold.✓ ◻

Following the last Theorem 5, canConflict can be derived from the trigger relation.
Algorithm 2 accounts for all paths from the source to each node indirectly. The nodes
are processed in topological order (line 4), ensuring that a node is not addressed until all
its inputs have been processed. This method guarantees that all paths leading from the
source to these inputs are considered before the node itself is processed (the topological
order of the nodes in Fig. 1 is (p1, t1, p3, t4, t5, t6, p5, t7, p7, p6, p2, t3, p4, t8, p8, t9, p10,



12 TM. Prinz et al.

t10, t11, p11)). A node x cannot conflict with all nodes that are triggered by x (except
itself) and with all nodes that are triggered on all paths to x’s preset nodes (line 7). Since
canConflict is irreflexive, x is removed from R(x) (lines 8–9).

Time complexity: Algorithm 2 can compute canConflict in O(2∣P∣+2∣T ∣+ ∣F ∣), using
a linear topological ordering algorithm [2]. Since ∣F ∣ is quadratic regarding the number
of nodes in the worst case by Def. 1, canConflict can be computed in O(∣P∣2 + ∣T ∣2).
Note that the negation of canConflict leads to the can conflict relation. Therefore, can

Algorithm 2 Determination of the canConflict relation as an adjacency list R for all
nodes of a sound AFW-net N = (P,T,F,s, f ).
1: function COMPUTECANNOTCONFLICT(N = (P,T,F,s, f ))
2: Rtrigger ←COMPUTETRIGGER(N) // Rtrigger is an adjacency list
3: // Initialize R and a list L of nodes to compute.
4: R←∅
5: L← P∪T in a topological order starting from s
6: for all x ∈ L do
7: // All nodes in x’s preset were already processed.
8: R(x)← Rtrigger(x) ∪ ⋂z∈●x R(z)
9: for all x ∈ L do

10: R(x)← R(x)∖{x}
11: return R

conflict can also be computed in O(∣P∣2+ ∣T ∣2):

Proposition 5 (Can Conflict). Let N = (P,T,F,s, f ) be a sound AFW-net. canConflict
can be computed in O(∣P∣2+ ∣T ∣2). ⌟

Proof. The proposition requires a sound AFW-net N = (P,T,F,s, f ). canConflict can be computed
in O(∣P∣2 + ∣T ∣2) for each pair of nodes with Alg. 2. For this reason, canConflict can also be
computed in O(∣P∣2+ ∣T ∣2) after pairwise checking the canConflict relation for all nodes. ⊓⊔

4.4 Total Co-Occur, Total Conflict, Requirement, and Independence

Proposition 6 (Total Co-Occur, Total Conflict, Requires, and Independent). Let
N = (P,T,F,s, f ) be a sound AFW-net. Since canCooccur can be computed in O(∣P∣2+
∣T ∣2) by Prop. 1 and Prop. 2, and canConflict can be computed in O(∣P∣2 + ∣T ∣2) by
Prop. 5, totalCooccur, totalConflict, requires, and independent can be computed in a
quadratic time complexity O(∣P∣2+ ∣T ∣2) by applying Def. 9 on each pair of nodes. ⊓⊔

In summary, it is possible to derive the complete 4C Spectrum for sound AFW-nets
in a quadratic time complexity, O(∣P∣2 + ∣T ∣2). We have named the set of derivation
algorithms Behavioral Relation Computations, or BeRelCo for short.
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5 Inclusive Behavior in Process Models

Inclusive behavior, a concept in BPM, serves as a middle ground between exclusive
behavior — achievable through places with at least two output transitions — and con-
current behavior — characterized by transitions with at least two output places. Nodes
exhibiting this inclusive behavior are typically referred to as OR nodes. On one hand,
an OR node produces tokens for a non-empty subset of its output places. On the other
hand, not all inputs of an OR node need to carry a token for the OR to be activated. It is
a widely accepted principle that OR nodes, especially those with multiple inputs, “wait
for all possible tokens” that might arrive, particularly in acyclic process models [20].

OR nodes can significantly increase the number of potential run nets [10], making
the management of ORs crucial in the detection of behavioral relations. Despite their
frequent occurrence in process models, OR nodes are not directly representable in Petri
nets. One approach to accommodate ORs, as done in this paper, is to extend the Petri
net concept: Nets get a further set for inclusive nodes (represented as rectangles with
diamonds in figures in the following). We took the accepted semantics of Völzer [20]
for acyclic nets (OR-joins “wait for all possible tokens”). Alternatively, ORs can be
translated into a Petri net by substituting them with combinations of transitions and
places. However, these substitutions can result in a non-free-choice net or expand the net
to a free-choice variant where the number of nodes exponentially increases compared to
the original model [8]. In essence, translating ORs can lead to either a non-free-choice
or an exponentially larger net, both posing significant computational challenges due to
a combinatorial increase in run nets.

Another challenge arises from the definition of concurrency (as per Def. 8, based
on the work of Polyvyanyy et al. [15]), which defines concurrency on the absence of
a direct path between two nodes in at least one run net. With the introduction of OR
constructs, situations may arise where two nodes appear to be concurrent under Def. 8
but cannot actually be enabled simultaneously or share tokens in the same marking.
This discrepancy makes the standard definition of concurrency (e. g., [15, 21]) counter-
intuitive in scenarios involving ORs, where parallelism does not align with the expected
behavior. For instance, consider nodes p3 and p5 in Fig. 3, where transitions marked
with diamonds signify ORs. Here, p3 invariably loses a token before p5 receives one,
avoiding premature firing of o1. Despite this sequential token transfer, these nodes are
deemed concurrent by Def. 8 in the run net depicted in Fig. 4.

To address this imprecision in acyclic AFW-nets, soundness offers a solution. We
recommend to refine the concurrency definition regarding the results of this paper: Two
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nodes x and y are concurrent iff there is no path between x and y in the AFW-net
(instead of a run net) and x and y co-occur.

The BeRelCo algorithms are effectively designed to accommodate OR constructs
within Petri nets, employing this refined definition of concurrency (as per Definition 8)
to seamlessly integrate these elements: (1) The concurrency detection by [17] starts
with transitions, as transitions with multiple outputs cause concurrency. Instead of only
starting with transitions, the algorithm can simply be extended so that it also starts
with ORs, as, in the “worst case”, the ORs also cause concurrency for each pair of
outputs. (2) Alg. 1 determines the trigger relation and distinguishes between places and
transitions as the only other algorithm of BeRelCo. Line 7 checks whether the current
node x is a transition, or not. If x is an OR, then it can represent a simple decision like a
place with multiple outputs. Therefore, ORs should be treated as place-like in line 10.

6 Related Work

In the following, we investigate the related work in terms of computational complexity
and limitations regarding the investigated behavioral relations defined in Def. 9.

The (causal) behavioral profile of Weidlich et al. [21, 22] was intensively investi-
gated in research. It consists of four relations: strict order, exclusiveness, interleaving
order, and co-occurrence. The challenge is to align these relations with those in Def. 9.
The strict order and exclusiveness relations are equal to causal∀ and totalConflict, re-
spectively. The co-occurrence relation is similar to requires since it is not defined as
a symmetric relation [22]. The interleaving order relation is a mix of concurrent∃ and
independent. For sound free-choice workflow nets being decomposable into structured
SESE fragments [19], the computational complexity of the four relations is linear for
a single pair of nodes and, therefore, cubic for all pairs. In the more general case of
unstructured SESE fragments, this complexity increases to O(∣P∣5+ ∣T ∣5).

Polyvyanyy et al. [15] and Wolf [23] mapped most of the 4C Spectrum relations
to the reachability problem. For acyclic sound free-choice workflow nets, the reacha-
bility problem has a polynomial computational complexity [24], however, the concrete
polynomial is unknown. Ha and Prinz [10] have investigated the set of behavioral rela-
tions of Def. 9 for acyclic sound workflow graphs. Their approach has a complexity of
O(∣F ∣3) for a single pair of nodes and, therefore, O(∣F ∣3 9(∣P∣2+ ∣T ∣2)) for all pairs.

In summary, the computational complexity for acyclic sound free-choice nets is
O(∣P∣5 + ∣T ∣5) for causal∀, totalConflict, and requires; and O(∣F ∣3 9(∣P∣2 + ∣T ∣2)) for the
other relations. Furthermore, except for the algorithm in [10], the other approaches are
only applicable to workflow nets without inclusive behavior. To the best knowledge of
the authors, the approach of this paper has the best computational worst-case complex-
ity to compute the behavioral relations of Def. 9 and is the only approach to compute
these relations for inclusive behavior in a polynomial complexity.

7 Evaluation

The BeRelCo algorithms, detailed in Sect. 4, have been implemented using a simple
script-based approach in PHP for evaluation purposes. This implementation is open-
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source and accessible on GitHub4. Our experiments were conducted on a machine out-
fitted with an Intel® Core™ i7 CPU, featuring 14 cores and 64 GB of main memory,
running Microsoft Windows 11 Professional. PHP version 8 was utilized for the execu-
tion of the scripts. To guarantee the reliability of our results, each runtime measurement
was performed ten times. We excluded the fastest and slowest runs from this set and
calculated the mean values from the remaining measurements. We then compared the
performance of the BeRelCo algorithms against a brute-force approach for deriving all
run nets according to Def. 7, hereinafter referred to as ’RunNets’. The brute-force ap-
proach was chosen since all approaches in the literature finally depends on a similar
strategy for inherently unstructured fragments (e. g., for [22] and [10]).

The evaluation of the algorithms was conducted using two well-known datasets:
the IBM Websphere Business Modeler dataset [7,12], henceforth referred to as the IBM
dataset, which includes 1,386 files, and the SAP Reference Models dataset [4], hereafter
referred to as the SAP dataset, containing 604 files. The data sets were selected because
they represent real process models for which numerous analyses can already be found
in the literature. Given the algorithms’ prerequisites for analyzing sound AFW-nets, a
subset of the datasets was selected for investigation — specifically, 604 nets from the
IBM collection and 414 from the SAP collection are sound acyclic free-choice work-
flow nets (all nets of IBM are free-choice, 178 nets are cyclic, and, from the remaining
1208 acyclic nets, 604 are unsound; all nets of SAP are free-choice, 31 nets are cyclic,
and, from the remaining 569 acyclic nets, 152 are unsound). The nets within the IBM
dataset were provided in PNML format, facilitating direct analysis. Conversely, the SAP
dataset’s nets, present in a simplified JSON format that describes BPMN-like models
with AND, XOR, and OR nodes, required conversion into Petri nets for compatibility.
This conversion was guided by the extended Petri net concept discussed in Sect. 5.

Subsequently, runtime measurements of both datasets are presented in the form xI
| yS with measures xI for IBM and yS for SAP. The size of the nets under investigation
varies, with 75% of the nets having 57I | 36S nodes or fewer. The largest nets contain a
maximum of 546I | 133S nodes. Places are more frequent than transitions (61%±4%I |
56%±6%S of all nodes are places). The SAP nets contain 7%±7% OR nodes.

Upon application to IBM and SAP, both algorithms successfully identified the same
node relations across all eligible nets. The main objective was to establish the BeRelCo
algorithm as a more efficient alternative to RunNets or similar exploratory algorithms.
Consequently, we assessed the computational time required by both algorithms to derive
all relations within a net. The findings indicate that the BeRelCo algorithms outperform
RunNets in processing speed across both datasets: It needs just 0.655I | 0.328S [s] to
compute >6.3MI | >1.2MS pairs of nodes being in relation. In contrast, the RunNets
algorithm requires 4.038I | 435.066S [s] for doing the same job, i. e., the BeRelCo al-
gorithm is approx. 6I | 1326S times faster. Notably, RunNets was unable to process 2
nets from SAP because the number of run nets exceeded 500k. We have introduced this
limit artificially after some experiments, as otherwise the allocated main memory would
be exceeded and lead to an uncatchable error in PHP. Figure 5 illustrates the computa-
tion times of some of the nets in relation to their size (number of nodes). It shows the
computation times for three sets: (1) For nets requiring more than 0.01 [s] for RunNets

4 https://github.com/guybrushPrince/berelco

https://github.com/guybrushPrince/berelco
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Fig. 5. Comparison between the number of nodes and the logarithmic time to compute all behav-
ioral relations for three different subsets of all nets regarding their computation times.

(illustrated as red dots); (2) for nets requiring more than 0.01 [s] for BeRelCo (illus-
trated with green triangles) and (3) for intractable nets with RunNets. In summary, the
BeRelCo algorithm demonstrates superior efficiency, processing all nets that took more
than 0.01 [s] with RunNets in less than 0.01 [s]. Furthermore, any net that required more
than 0.01 [s] with BeRelCo was processed in a similar or longer duration by RunNets.
Notably, intractable nets with RunNets were processed by BeRelCo in under 0.01 [s].
BeRelCo consistently achieves tractable processing times for each net, with a maximum
duration of up to 0.1 [s], showcasing a significant improvement.

8 Conclusion

Systematically identifying business process models within extensive collections poses
a considerable challenge. Process queries facilitate the identification of models that
meet specific characteristics, relying on behavioral relations, to illustrate how tasks in
a process model interact during execution. The 4C Spectrum — comprising conflict,
co-occurrence, causality, and concurrency — provides a comprehensive framework for
these behavioral relations. However, current computational methods for analyzing these
relations can be time-consuming for various process models. This paper introduces a
suite of algorithms, named Behavioral Relation Computations (BeRelCo), designed to
efficiently detect all behavioral relations within the 4C Spectrum in quadratic time com-
plexity, O(∣P∣2 + ∣T ∣2), for models that can be represented as acyclic sound free-choice
workflow nets. Our experiments validate the BeRelCo algorithms’ effectiveness, no-
tably in models with numerous execution traces.

Industrial process modeling languages, often aligned with workflow graphs, can
be depicted as free-choice workflow nets [8]. Soundness was identified as a critical
requirement [5]. Therefore, the algorithms we have introduced hold substantial value
for the BPM community, not only facilitating process queries but also underpinning
process similarity analysis, compliance checking, and other key BPM activities.

Currently, our approach is limited to acyclic nets. Future efforts will focus on ex-
tending these algorithms to handle cyclic nets through loop decomposition [16] by de-
vising combinatorial rules for behavioral relations for the resulting acyclic nets. More-
over, we aim to adapt our algorithms for models that feature duplicated labels, where
tasks may occur multiple times, broadening their applicability and utility in complex
process model analyses.
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