
MVVM Revisited: Exploring Design Variants of
the Model-View-ViewModel Pattern

Mario Fuksa , Sandro Speth , and Steffen Becker

Institute of Software Engineering
University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany

[firstname.lastname]@iste.uni-stuttgart.de

Abstract. Many enterprise software systems provide complex Graph-
ical User Interfaces (GUIs) that need robust architectural patterns for
well-structured software design. However, popular GUI architectural pat-
terns like Model-View-ViewModel (MVVM) often lack detailed imple-
mentation guidance, leading GUI developers to inappropriately use the
pattern without a comprehensive overview of design variants and often-
mentioned trade-offs. Therefore, this paper presents an extensive review
of MVVM design aspects and trade-offs, extending beyond the standard
MVVM definition. We conducted a multivocal literature review (MLR),
including white and gray literature, to cover essential knowledge from
blogs, published papers, and other unpublished formats like books. Us-
ing the standard MVVM definition as a baseline, our study identifies
(1) 76 additional design constructs grouped into 29 design aspects and
(2) 16 additional benefits and 15 additional drawbacks. These insights
can guide enterprise application developers in implementing practical
MVVM solutions and enable informed design decisions.

Keywords: Model-View-ViewModel · MVVM · Graphical User Inter-
face (GUI) · GUI Architectural Pattern.

1 Introduction

Graphical User Interface (GUI) architectural patterns like Model-View-Controller
(MVC), Model-View-Presenter (MVP), or Model-View-ViewModel (MVVM)
play a central role when building robust and complex GUIs for enterprise applica-
tions. Many developers use the MVVM pattern, which promises high testability
and helps to decouple the GUI from the business logic. While Microsoft originally
introduced the pattern for the Windows Presentation Foundation (WPF) appli-
cation development, in recent years, the pattern has also gained more promi-
nence for mobile development [16]. For example, ViewModels are part of the
suggested architecture for Android apps [14], while it is also popular in iOS
development [11]. The origin of the MVVM pattern is often defined in Martin
Fowlers PresentationModel, which describes the idea of separating the presenta-
tion state from the View in a dedicated observable data-structure and aims for
a Humble View [7,8].

https://orcid.org/0000-0002-8210-094X
https://orcid.org/0000-0002-9790-3702
https://orcid.org/0000-0002-4532-1460

2 Mario Fuksa , Sandro Speth , and Steffen Becker

However, while MVVM is prominently used, it is a set of a few guidelines,
and standard MVVM definitions leave many design decisions open. For instance,
MVVM does not specify how to structure the GUI at the dialog level [6]. Many
developers have their interpretation of the pattern and use specific variants in
their implementations. This comes with architectural risks: (1) developers select
certain MVVM implementations without having an overview of which design
alternatives they could consider. (2) MVVM has implicit trade-offs, which de-
velopers often do not know in advance.

While significant research exists on MVC and various GUI architectural pat-
terns, no comprehensive literature study explores design variants and additional
trade-offs regarding MVVM. Specifically, gray literature and books often con-
tain essential aspects about the usage of MVVM, which has not been covered by
white literature so far. The lack of a systematic review that integrates diverse
sources leaves a critical void in the literature. Therefore, many developers and
researchers might miss a complete overview of MVVM.

To fill this gap, this paper presents a Multivocal Literature Review (MLR),
including a qualitative analysis of a broad amount of white and gray literature.
The MLR focuses on the conceptual level of the MVVM pattern and does not
analyze specific GUI framework implementation details since, in our perspective,
GUI frameworks do not implement or even enforce a specific MVVM design
variant. Therefore, we guide the MLR by the two research questions:

RQ1: Which design variants do developers use when implementing MVVM?

RQ2: Which trade-offs do developers mention when applying MVVM?

As a result, we extracted 76 additional design constructs, 16 additional ben-
efits, and 15 additional drawbacks, which go beyond the MVVM standard defi-
nition. We synthesized 29 design aspects to categorize those design constructs.
Therefore, this paper gives an overview of MVVM design variants and trade-offs
to help developers make informed decisions when implementing MVVM.

The paper’s remainder is structured as follows: Section 2 describes the MVVM
standard definition and trade-offs. Section 3 outlines the MLR process. Section 4
discusses the results. Section 5 details design variants. Section 6 handles threats
to validity. Section 7 covers related work. Section 8 concludes the paper.

2 Standard Definition of Model-View-ViewModel

A central element in our MLR is a standard definition about MVVM, which we
use as the baseline to identify design deviations, extensions, or additional trade-
offs. Our standard definition relies mainly on the definition and trade-offs that
John Gossman originally introduced in Microsoft blog posts [16,17]. Additionally,
we regard an often cited definition of Josh Smith on a Microsoft blog post and
two further official documentation sites of Microsoft about MVVM [25,26,33].

MVVM is a GUI architectural pattern derived from MVC, where the View-
Model replaces the controller and uses a general data-binding mechanism. It
specializes Fowler’s PresentationModel [7]. Figure 1 shows the three components:

https://orcid.org/0000-0002-8210-094X
https://orcid.org/0000-0002-9790-3702
https://orcid.org/0000-0002-4532-1460

Exploring Design Variants of the Model-View-ViewModel Pattern 3

Databinding
View ViewModel Model

Notification

Update

Fig. 1. The Standard Model-View-ViewModel Architectural Pattern.

Model : As in MVC, the Model contains the data and business logic completely
independent of the GUI. The concrete design of Model classes has almost nothing
to do specifically with the MVVM pattern.
View : Also similar to MVC, the View consists of visual elements (like buttons,
windows, or graphics) and uses one-way1 or two-way2 data-binding to View-
Model fields to obtain information to visualize. The View can be data-bound
directly to Model elements or by further elements defined by the ViewModels.
ViewModel : The ViewModel handles the presentation logic like data transforma-
tion, acts as the “Model for the View”, and provides information by data-binding.
It exposes Commands that the View can use to interact with the Model. View-
Models might contain (sole or extending) validation logic. Further, the View-
ModelLocator pattern helps to instantiate and locate ViewModel instances.
Relationships: In MVVM, the View knows the ViewModel, and the ViewModel
knows the Model. The Model is unaware of the View and the ViewModel, while
the ViewModel is unaware of the View.

Standard benefits of MVVM are that ViewModels provide an abstraction of
the View and an easier way to unit-test presentation logic. The components
(View, ViewModel, Model) are decoupled from each other, supporting develop-
ers to swap, create, or maintain more easily. It can reduce boilerplate code in
the View while providing good data-binding performance. Further, a developer-
designer workflow helps the development team create robust ViewModels, while
a design team can focus on user-friendly View designs. Additionally, it cleanly
separates the application’s business logic and presentation logic.

Standard drawbacks of MVVM are the complexity for simple GUIs, challenges
in designing ViewModels up-front in bigger cases, harder debugging of declara-
tive data bindings, and increased memory consumption by binding overhead.

3 Methodology

This section describes the applied MLR process in which we conducted a quali-
tative analysis of MVVM-focused sources. We used the MLR process of Garousi
et al. [13] to follow a structured process to review gray and published literature
and extract information to answer our research questions. Figure 2 shows an
overview of our specific process involving data entities and activities. We sepa-
rated into the planning of the MLR, a search process, an attribute/classification
design, a data extraction process, and a data synthesis. We provide a replica-
tion package3 which transparently shows the results of each step, like the initial

1 E.g., updates on a ViewModel’s field are automatically reflected to a View’s textbox
2 E.g., in addition to one-way binding, modifications on the View’s textbox are auto-
matically reflected to the ViewModel’s field

3 https://doi.org/10.5281/zenodo.13350488

https://doi.org/10.5281/zenodo.13350488

4 Mario Fuksa , Sandro Speth , and Steffen Becker

Planning the MLR

Motivation: Missing
Overview of MVVM

Design Variants

MLR Goal: Identify
MVVM Variants &

Additional Trade-offs

RQ1
Used Design Variants?
RQ2
Mentioned Trade-offs?

Conducting the MLR

Initial Search
Gray Literature:
Regular Google
Search Engine

Published Literature:
Google Scholar,
Semantic Scholar,
ACM, IEEE

Legend

Database

Activity Data/Entity

 Multiple
Entities

Search Keywords:
"mvvm", "viewmodel", ...

Initial Pool of Sources:

Final Pool:
38 Scholar Entries +
125 Website Entries

76 Additional
Design Constructs

16 Additional Benefits +
15 Additional Drawbacks

Data Synthesis
MLR Results:

Answer RQ1, RQ2

Attribute IdentificationClassification Scheme /
Final Map

Attributes:
Publication Year, Type,

Standard Definition,
Standard Trade-offs,

Design Deviations,
Additional Trade-offs

Activity

Initial Search

Manual Scanning
(Voting)

AI-based Automated
Scanning (Voting)

Attribute Identification

Data Extraction

Relevance
Filtering 188 Scholar Entries

2

3

4 5

1

29 Design Aspects + 31 Trade-offs

519 Scholar Entries

523 Website Entries

Fig. 2. Overview of the Applied Multivocal Literature Review (based on Garousi [13]).

search, the attribute scheme with all identified design constructs and trade-offs,
or the final data synthesis results. We also included scripts to semi-automate
most steps, e.g., to check for duplicate or unrelated search results.
1 Planning the MLR: First, we planned the MLR and included our motivation
for the missing overview of MVVM design variants that people apply in practice.
The goal is to identify essential variants of MVVM, which might cover aspects
not mentioned in the standard definition. The outcomes of the planning phase
are the two research questions that guide our MLR.
2 Search Process: The search process covers the initial search for gray and
published literature, filtering, and voting. First, we defined relevant keywords:
“mvvm”, “model-view-viewmodel”, “viewmodel”, and “view model”. We varied
the combination of keywords depending on the possible search options of the
databases. We used the regular Google search engine to find gray literature and
multiple databases to find published literature, such as white papers and books.
We utilized the tool Publish or Perish4 to search in Google Scholar and Semantic
Scholar mainly by title keywords. Further, we did a dedicated search in the ACM
and IEEE databases to complement relevant white papers that do not directly
contain the keywords’ titles. The searches were up-to-date until the beginning
of 2024, resulting in 519 scholar entries and 523 website entries.

Next, we filtered and voted on the entries. We first focused on scholar entries
and filtered out several entries by exclusion criteria shown in Table 1, which

4 https://harzing.com/resources/publish-or-perish

https://orcid.org/0000-0002-8210-094X
https://orcid.org/0000-0002-9790-3702
https://orcid.org/0000-0002-4532-1460
https://harzing.com/resources/publish-or-perish

Exploring Design Variants of the Model-View-ViewModel Pattern 5

Table 1. Exclusion Criteria of Scholar Entries.

Criteria Notes

Not-English exclude if not written in English
Duplicates exclude any duplicate entry
Unfocused exclude if not focusing on MVVM definitions

reduced the number of scholar entries to 188. Since scholar entries allowed us to
scan efficiently based on titles, abstracts, and their typical scientific structure, we
manually voted them for relevance. Here, we also scanned MVVM definitions if
they contain no definition, only standard definition constructs, or if they poten-
tially describe significant design constructs or additional trade-offs. For example,
we reject papers that only use MVVM as an implementation detail without a
clear MVVM definition. This voting resulted in 38 final scholar entries.

We used another voting approach for websites since we cannot easily filter
them. Leveraging the capabilities of ChatGPT (using GPT-4), we used AI-based
automated voting. The motivation derives from the lack of standardized website
structures, which makes it difficult to scan and filter non-relevant entries without
reading each website completely. First, we manually read 20 pivot websites and
classified them. We then iteratively improved a prompt for ChatGPT, including
our criteria, default definition, and trade-offs, until the pivot websites were clas-
sified as expected. We finally used chunks of five URLs and let ChatGPT process
the voting. As a result, the AI classified the number of websites into the cate-
gories “Standard Definition”, “Extended Definition”, “Extended Trade-offs”, or
“No Definition”. The outcome of this voting is 125 website entries.

In our MLR, we focused on the View/ViewModel-specific aspects of MVVM.
We largely filtered out design constructs for the Model layer since they are
usually not MVVM-specific, i.e., they also apply to MVC and MVP.
3 Attribute/Classification Design: We identified relevant attributes as a clas-
sification scheme based on the final pool of 38 scholar entries and 125 websites
containing potentially significant data. As meta-data, we are interested in the
publication year and type (i.e., personal or professional articles, forum discus-
sions, white papers, technical reports, or books). Qualitatively, we are interested
in the attribute if a source aligns with the MVVM standard definition or stan-
dard benefits/drawbacks. Besides this, we also classified design extensions and
additional trade-offs, which extend the standard constructs. To structure results,
we then developed a helper language using JetBrains MPS (see our replication
package), which prepares the structure of the classification scheme.
4 Data Extraction: In the data extraction phase, we analyzed the sources’
data to identify relevant design constructs and trade-offs that align with our
classification scheme. This qualitative analysis carefully reviewed each voted en-
try using the prepared classification scheme. Not every entry contained relevant
design constructs; e.g., several websites voted by ChatGPT aligned more or less
with the baseline standard definition.

Figure 3 overviews the found design constructs and their occurrences across
gray and white literature types. We combine similar design constructs into eleven

6 Mario Fuksa , Sandro Speth , and Steffen Becker

Websites Articles

Forum Discussions
Books

Published Papers

Technial Reports
Theses

ViewModel Responsibilities

ViewModel Field Design

ViewModel Abstractions

View/ViewModel Relationships

Networking & Client/Server

Navigation

Formatting & Localization

View Interactions

Commands & Asynchronous Design

Application Lifecycle

MVVM DSL

17

7

13
4

9

1

2 1 1

4 5 2 2

1

7 1

2 22

10 4

9 113 2

3 1

125 1 2

4
5
1

2

8

Sum

5

20

5

29

13

22

6

31

9

20

3

4 1 18

4

1

Topics

Source Types

Fig. 3. Distribution of 76 Design Constructs Grouped into Topics.

topics (e.g., formatting and localization) to consume the figure more easily. The
overview shows that most constructs are covered by books, followed by website
articles. Further, it highlights that the most referenced topics are navigation
(e.g., how one ViewModel navigates to another View/ViewModel) and various
ViewModel abstraction constructs (e.g., humble View vs. reusable ViewModels).
Therefore, we describe those two topics in Subsections 5.1 and 5.2 in more detail
and briefly examine the further topics in the joint Subsection 5.3. Finally, we ex-
tracted 76 additional design constructs, 16 additional benefits, and 15 additional
drawbacks compared to the MVVM standard definition. We discuss a subset of
the extracted data in more detail in Section 4. The replication package provides
the full overview, including details on their occurrences and explanations.
5 Data Synthesis: We performed a data synthesis from the extracted data to
answer RQ1 and RQ2. For RQ1, we classified the 76 design constructs (e.g., View
has Many ViewModels) into 29 design aspects (e.g., View/ViewModel Relation-
ships) and selected aspects of our particular interest to describe in Section 5. For
RQ2, we processed 16 additional benefits and 15 drawbacks. In the next section,
we explicitly answer the two research questions as part of the data synthesis,
including a discussion of the results.

4 Discussion and Results

This section discusses the results of the MVVM MLR by addressing the two
research questions RQ1 (used MVVM design variants) and RQ2 (mentioned
MVVM trade-offs). We highlight key findings and practical takeaways for enter-
prise application developers.

https://orcid.org/0000-0002-8210-094X
https://orcid.org/0000-0002-9790-3702
https://orcid.org/0000-0002-4532-1460

Exploring Design Variants of the Model-View-ViewModel Pattern 7

MVVM Design Variants (RQ1) The MLR identified 76 additional design
constructs grouped into 29 design aspects, representing variants of the stan-
dard MVVM definitions. Due to the breadth of design constructs, we further
organize the 29 design aspects into eleven topics, as illustrated in Figure 4. We
focus on the two most referenced: The ViewModel abstractions topic includes
twelve constructs in five design aspects (application structure, coupling, design,
humble/reusable, model wrapper), mentioned 31 times (see Subsection 5.1). The
navigation topic includes eight constructs in three design aspects (composition,
responsibility, view-based) mentioned 29 times (see Subsection 5.2). Further top-
ics include command design, view interactions, lifecycle aspects, networking,
View/ViewModel relationships, formatting/localization, ViewModel field design
and responsibilities, or using an MVVM Domain Specific Language (DSL) in
Subsection 5.3. We also synthesized relations between design constructs and
standard MVVM:

– Restricting Constructs: Nine constructs restrict design rules addressed by
the MVVM standard definition. For example, while the standard definition
does not limit the cardinalities between View and ViewModel, the construct
View has One ViewModel does.

– Extending Constructs: 43 constructs extend the MVVM standard definition
by addressing unmentioned aspects. For instance, Model-View-Presenter-
ViewModel and MVVM/Controller handle the modularization of the View-
Model, addressing the often-mentioned drawback of the ViewModel growth
due to many responsibilities without proper modularization.

– Implementing Constructs: Twelve constructs provide concrete implementa-
tions for standard MVVM aspects. For example, standard definitions men-
tion “asynchronous operations” but lack guidance for handling asynchronous
data bindings not firing on the GUI thread. Constructs like Asynchronous
Results Handling by Mediator address this using the mediator pattern.

– Confirming Constructs: Seven constructs confirm and clarify standard MVVM
“tips” or intentions by providing concrete examples. For instance, the Col-
oring in ViewModel construct confirms the responsibility of data conversion
in the ViewModel for color formatting.

– Divergent Constructs: Four constructs contradict MVVM standard “tips”
or intentions. For example, Coloring in View contradicts the intention of
placing data conversion logic into the ViewModel by describing how the
View can implement the responsibility of formatting colors instead.

These design constructs provide a valuable framework for implementing the
MVVM pattern, enabling developers to make well-informed design decisions.

Model Wrapper

VM Abstractions Navigation View/ViewModel Relationships

Humble vs. Reusable Composition View-based

VM Hierarchy

...

...
...

Aggregate ModelProxy Properties

... ...

Humble View ...

Topic

Aspect

Construct ...Reusable VM

Fig. 4. Design Constructs Hierarchy: Topic ⊃ Aspect ⊃ Construct.

8 Mario Fuksa , Sandro Speth , and Steffen Becker

RQ1 Key Takeaways:
The MVVM standard definitions stay vague on crucial design aspects, sig-
nificantly impacting implementations. We identified design constructs that
restrict MVVM rules for specialized design variants, address aspects not
covered by standard MVVM, provide concrete implementation guidelines,
and confirm or diverge from standard MVVM intentions.

MVVM Trade-offs (RQ2) The MLR identified 16 additional MVVM benefits
and 15 additional MVVM drawbacks (Table 2), which the standard MVVM
definition does not mention. We highlight the three most cited benefits and
drawbacks here.
Benefits: First, eight sources mention the benefit that MVVM supports easier
reuse of components like the ViewModel [12]. This is especially beneficial if a
ViewModel can be reused for multiple Views. Second, it is stated in five sources
(including multiple empirical studies) on mobile applications that MVVM can
lead to a better application performance [39]. Third, four sources mention that
MVVM achieves a higher decoupling of View and ViewModel since the View-
Model usually does not know the View. In the so-called “Pure MVVM”, the
decoupling is further increased since the View obtains a ViewModel instance
without knowing its concrete type, and data binds to its fields dynamically [37].
Drawbacks: Twelve sources state that the ViewModel usually has too many
responsibilities. Inexperienced developers, in particular, might place too many
responsibilities into the ViewModel without considering modularization. The un-
clear definition of MVVM could be a possible reason [12]. Second, seven sources
discuss the high learning curve, which can hinder developers from applying the
MVVM pattern efficiently [1,11,37]. Third, seven sources mention that MVVM
involves substantial boilerplate code, mainly if weak tooling support is used and
glue code for data-binding has to be written manually [37].

RQ2 Key Takeaways:
Applying the MVVM pattern yields many benefits and drawbacks that
developers might not know explicitly. Understanding additional trade-offs
can help evaluate the pattern or its design variants more effectively and
support making informed decisions when implementing MVVM.

These results highlight the importance of understanding the various design con-
structs and trade-offs associated with the MVVM pattern. By leveraging the
additional insights from our MLR, enterprise application developers can make
informed decisions and tailor their implementations to suit specific project needs
better while avoiding common pitfalls.

5 Design Aspects

This section discusses the resulting design aspects of the MLR. We selected
design constructs of particular interest, which we discuss in a bit more detail.

https://orcid.org/0000-0002-8210-094X
https://orcid.org/0000-0002-9790-3702
https://orcid.org/0000-0002-4532-1460

Exploring Design Variants of the Model-View-ViewModel Pattern 9

Table 2. Additional Benefits and Drawbacks of MVVM (with Occurrences Number).

Benefit No. Drawback No.

Easier Reuse of Components 8 Many Responsibilities in ViewModel 12
Better Performance vs. MVC/MVP 5 Lot of Boilerplate 7
Increased Decoupling 4 High Learning Curve 7
Less Boilerplate by Library 3 Difficult Testability 3
UI Requirements Quickly Adapted 3 Developer-Designer Workflow Issues 2
View Easily Replaced/Extended 3 Lack of Pattern Guidance 2
N-Tier: Incr. Security/Performance 2 Async Fetching/Threading 2
Different UI Technologies 2 Poor Reusability 1
Development Speed Increased 2 More Classes/Components 1
Easier to Cache View-state 2 Repeated Code in ViewModels 1
Easier Debugging 1 UI-Framework Features Testability 1
Less Imperative Code 1 Complex User Interactions Impl. 1
Well-organized Design 1 3rd-Party Library Issues 1
Reduced Energy Consumption 1 Command Impl. Overhead 1
Reduced CPU Usage 1 Higher CPU Consumption 1
Easier to Maintain Lifecycle 1

5.1 ViewModel Abstractions

This subsection discusses design constructs that focus on designing ViewModel
abstractions. The varying ViewModel abstractions significantly impact the im-
plementation of the MVVM. Therefore, we discuss them in more detail.

Reusable ViewModel vs. Humble View There are two alternatives on how
strictly a ViewModel is oriented to a specific View. The first alternative focuses
on flexibility and reusability across different Views (i.e., different information for-
mats). The second alternative defines a ViewModel supporting a Humble View
to maximize testability and GUI framework exchangeability. Figure 5 illustrates
the distinction with a simple example of a PersonViewModel: a reusable View-
Model vs. a Humble View design. Both alternatives have different impacts on
reusability and testability.

PresentationReady-ViewModel /
Humble-View

class PersonViewModel {
 string FirstName
 string LastName
 int? Age
 Address? Address
}
class Address {
 string Street
 int Number string Country
}

Reusable-ViewModel /
PresentationMapping-View

class PersonViewModel {
 string FirstNameText
 string LastNameText
 bool IsAgeVisible
 string AgeText

 bool IsAddressVisible string AddressText
}

Fig. 5. Reusable ViewModel vs. Humble View.

10 Mario Fuksa , Sandro Speth , and Steffen Becker

Reusable-ViewModel/PresentationMapping-View : The first alternative defines
reusable ViewModels, which can be used in multiple Views in a many-to-one
relationship (ViewModel 1:n View). The ViewModel knows as little as possible
about the specific View details and provides abstract data the View can con-
sume. This implies that the presentation mapping of the ViewModel data to
certain GUI widget features (e.g., textbox visibility) is the responsibility of each
View. Therefore, unit testing reusable ViewModels does not cover presentation
mapping logic placed in the View [19]. To fully cover the full presentation logic,
the View also needs to be tested. For example, a PersonViewModel provides
more generic information like age information or an optional Address object,
which the View needs to map to boolean or string representations.

PresentationReady-ViewModel/Humble-View : The second alternative defines
View-specific ViewModels, designed in a one-to-one relationship with a View
(ViewModel 1:1 View). Unlike the first alternative, the ViewModel contains the
presentation mapping logic, making it presentation-ready with a concrete intent
on how information maps to GUI widget features. Consequently, the ViewModel
provides information primarily as formatted strings or booleans, transforming
the View into a Humble Object with minimal presentation logic. This supports
unit testing of ViewModels covering most of the presentation logic, including
mapping logic [19,37]. For example, the PersonViewModel provides presentation-
ready fields like a boolean to control the address information visibility. Further,
ViewModel fields like FirstNameText or AgeText have a concrete intent on how
they should be mapped to a GUI widget. However, a Humble View limits the
ViewModel reusability across Views with different information formats. At the
same time, some sources explicitly state that reusing ViewModels should not be
a premature goal [3] and almost never happens in practice [34].

Coupling and Model Wrappers Another particularly interesting aspect from
our perspective is the coupling of the ViewModel to GUI frameworks. Suppose
developers use GUI framework-specific helper classes like observables, command
base classes, or visibility enumerations. In that case, the ViewModels are coupled
to the framework and cannot be easily reused for other GUI frameworks in the
future. Alternatively, if developers strictly avoid using such utility classes, they
might develop them themselves [10,27]. This makes the ViewModels truly inde-
pendent of GUI frameworks, and the GUI framework can be migrated without
touching them. A further essential aspect of ViewModels is whether it exposes
Model objects (e.g., business entities). The reviewed sources state two options:

Aggregate Model : The ViewModel directly exposes Model objects, which implies
that the Model objects support observability for data-binding [37].

Model Wrappers: Instead of exposing Model objects, the ViewModel acts as
a Model wrapper and provides proxy properties of any Model property [1]. For
example, a Model Person class with a name is wrapped into a PersonViewModel
with a dedicated observable name proxy property.

https://orcid.org/0000-0002-8210-094X
https://orcid.org/0000-0002-9790-3702
https://orcid.org/0000-0002-4532-1460

Exploring Design Variants of the Model-View-ViewModel Pattern 11

ViewModel

View

Coordinator

ICoordinator

MVVM-C
Navigation in View-Layer

ViewModel

View

GUI Framework
Coordinator

MVVM-C
Navigation in ViewModel-Layer

<<implements>>

<<locate>>

<<locate>>

<<navigate>>

Fig. 6. MVVM-C with Different Navigation Placement.

5.2 MVVM with Navigation

Navigation and routing of Views are important responsibilities in many enter-
prise applications. This subsection discusses three design constructs: MVVM-C,
hierarchical ViewModels, and ViewModel navigation events.

MVVM-C In MVVM-Coordinator (MVVM-C), navigation is explicitly in-
cluded, which extends MVVM by a Coordinator component responsible for nav-
igation. We see two options, as illustrated in Figure 6: The first option places the
coordinator into the View-layer, solving the navigation using GUI framework-
specific tooling. The second option introduces an abstract coordinator or navi-
gation system in the ViewModel-layer, providing a GUI framework-independent
API for navigating from one ViewModel to another. The abstract coordinator
accepts either a type-information about the target ViewModel or it takes a con-
text path (e.g., a URI) to locate the target ViewModel plus context [11].

Hierarchical ViewModels In projects with hierarchical Views, developers
can create dedicated ViewModels for each View. This approach mirrors the View
hierarchy in the ViewModel layer. For instance, in a master-detail scenario, a
MasterViewModel might contain a DetailViewModel object, supporting direct
context navigation to the details [37].

ViewModel Navigation Events When ViewModels are decoupled and re-
quire navigation capabilities, observer or event mechanisms offer an effective
solution. The ViewModel triggers navigation events, which the View or an ex-
ternal component listens for handling navigation logic [3].

5.3 Further Design Aspects

This section briefly outlines nine further topics from the MLR results, highlight-
ing a subset of the most relevant design constructs. Our replication package5

discusses all design constructs in more detail and examples.

Command Design and Handling of Asynchronous Results WPF intro-
duces first-class framework support for MVVM commands. However, some GUI
frameworks do not have such support, and developers must design commands

5 https://doi.org/10.5281/zenodo.13350488

https://doi.org/10.5281/zenodo.13350488

12 Mario Fuksa , Sandro Speth , and Steffen Becker

more explicitly. One idea is that the ViewModel provides usual methods, which
are called by event handlers (e.g., OnButtonClicked()) in the View [1].

Several sources mention asynchronous processing in the ViewModel (e.g.,
network calls on another thread). The result handling code then has to update
the ViewModel, which is usually data-bound to properties of GUI widgets and
hence can only be updated from the GUI thread. One idea is to introduce an ab-
stracted dispatcher as a Mediator, which provides a GUI framework-independent
API to run code on the GUI thread. Using Dependency Injection (DI), the actual
GUI framework-dependent implementation is passed to the ViewModel objects,
such that it can be used in result handles of asynchronous calls [18].

ViewModels also might prevent further actions while an asynchronous call is
still running. Developers can use a Busy Flag to visualize information, which is
set until the result handler is processed [1].

View Interactions ViewModels often have to fulfill the requirement to inter-
act with the View, e.g., to let the View show a message box to the user. While
MVVM, by default, only defines that the View knows the ViewModel instance,
the ViewModel cannot directly call the View. We reviewed several design con-
structs to solve this problem: (1) Introduce a View interface, similar to MVP,
which the ViewModel uses for View interaction [27]. (2) Provide events6 in the
ViewModel which the View can subscribe to [37]. (3) Using an interaction service
that the ViewModel uses through an interface [37]. (4) Using Pub/Sub messag-
ing to publish/subscribe messages. Depending on the programming languages,
those options provide a way to solve the interaction problem [37].

Application Lifecycle Aware ViewModels In mobile apps (e.g., on An-
droid), developers must manage the application lifecycle. For example, if a user
pauses an app and resumes it later. Whenever a state is stored in ViewModels,
developers should ensure that the state is valid on a resume.

In some MVVM frameworks like Android Jetpack or MvvmCross, explicit
support is provided to make ViewModels lifecycle-aware. The idea is that View-
Models know about the application lifecycle’s creation, pausing, or resuming
events to control a consistent state. A bundle object can store and restore the
state, which encapsulates the persistence of data [15,29].

Networking and Client Server In client/server architectures, MVVM can
be essential in structuring the data sent over the network. One design construct
defines Remote ViewModels, which Singh introduces in a paper as the Remote-
Model View Remote-View-Model (RMVRVM) pattern [32]. In RMVRVM, the
ViewModel is sent over the network while the server stores the View state to
optimize further updates (i.e., send only deltas of an updated ViewModel). Singh
also discusses RMVRVM in the context of energy efficiency [32].

View/ViewModel Relationships In this aspect, we consider any statements
about the View/ViewModel cardinalities that are not stated in the standard
definition. Reviewed sources mention different combinations, namely that the

6 For example, the C# language event keyword

https://orcid.org/0000-0002-8210-094X
https://orcid.org/0000-0002-9790-3702
https://orcid.org/0000-0002-4532-1460

Exploring Design Variants of the Model-View-ViewModel Pattern 13

View has one or many ViewModels [19,20,30] or that the ViewModel has one or
many Views (e.g., when developing a wizard) [1, 19, 20]. Further, some sources
explicitly mention a one-to-one relationship, which implies a more strict MVVM
version. It implies that the View and ViewModel are a tandem developed to-
gether [2, 3, 34].

Formatting and Localization Some sources mention design constructs on
how the ViewModel or View formats data. For example, coloring can be solved
in two ways: (1) The ViewModel provides the color of a text box (as a string
color code or logical name). (2) The ViewModel provides a logical enumeration
state, and the View is responsible for mapping it to a concrete color [2, 20].

Another design construct is about how the ViewModel exposes numeric in-
formation. The ViewModel can either provide the integer or format it to the
presentation-ready string, which the View directly displays to the user [20].

Multiple sources deal with the responsibility of localization. If done in the
View, the ViewModel has to provide some logical strings, which the View-layer
then localizes using dictionaries. If the ViewModel orchestrates the localization,
the View is free of this responsibility, and the ViewModel uses a dictionary
component that it can use to translate strings [38].

ViewModel Field Design This aspect deals with how developers can design
ViewModel fields concretely. One design construct avoids Model types in View-
Models (allowed by the default definition). It allows only using standard types
like integer or string, which decouples the View/ViewModel from the Model [24].

Another design construct focuses on visibility information in ViewModel
fields. Instead of using GUI framework-specific visibility types, ViewModels use
simple boolean types [1].

Further design constructs discuss different orientations when developers de-
sign ViewModel fields: (1) View orientation [28]. (2) Explicitly independent of
the View [1]. (3) Model orientation by reusing Model types [18].

ViewModel Responsibilities When designing more complex ViewModels, de-
velopers should care about the responsibilities placed in the ViewModel. Sources
discuss different ideas, e.g., how bindings are refreshed, how dirty flags indicate
state changes, or where validation occurs.

We highlight two further ideas explicitly. First, for list items, filtering, sorting,
etc., can be done in View or the ViewModel [1]. Second, modularisation plays a
key role in complex scenarios, where input logic could be placed into a separate
Controller to take this responsibility out of the ViewModel [41].

MVVM Domain-specific Languages A team can leverage a DSL to specify
ViewModels and to ensure a consistent MVVM implementation. First, devel-
opers could use internal DSLs by using fluent API builders, which assist in
implementing ViewModel commands or data [12]. Alternatively, external DSLs
can help design a ViewModel’s API programming language-independent [10].

To test ViewModels, test engineers might also utilize external DSLs, as
demonstrated by the ViMoTest approach. Especially when using projectional
editors, GUI widgets could be pre-rendered in a test case [10].

14 Mario Fuksa , Sandro Speth , and Steffen Becker

6 Threats to Validity

In this section, we discuss threats to the validity of our MLR study.
Construct Validity : We used ChatGPT to vote and filter websites automati-
cally. Since ChatGPT’s nature is non-deterministic and sometimes unreliable,
we might have included false positives and false negatives. In particular, false
negatives could negatively affect our results since we might not cover relevant
aspects. To mitigate this threat, we confirmed the correctness by checking a
random selection of the voting results.

A further threat is about subjective interpretation. The design and applica-
tion of the classification scheme might involve biases or inconsistencies in catego-
rizing and analyzing data. Further, the manual voting process for scholar entries
might introduce selection bias, affecting the relevant sources.
Internal Validity : While we assume that our search did not scan every on-
line resource, our initial Google search yielded over 500 websites, providing a
substantial foundation. We have not applied further methods like systematic
snowballing since checking every website for references is a considerable effort.
Since we reviewed a substantial number of websites, it is unlikely that we missed
crucial concepts not covered by the reviewed literature entries.
External Validity : As professionals with specific backgrounds wrote many re-
viewed sources, our results might be more applicable to specific applications
(e.g., enterprise applications) and less to others (e.g., mobile apps or games).

Further, many reviewed sources focus on MVVM inherently integrated into
specific technologies like WPF. Therefore, our findings might be limited to the
ecosystems where MVVM is commonly used.
Reliability : The reproducibility of our search and selection process based on AI
tooling like ChatGPT introduces challenges to reproduction by other researchers,
impacting the reliability of the MLR process.

Further, our data synthesizing from extracted design constructs, benefits, and
drawbacks into classifications to answer research questions involves subjective
judgment, which might vary among researchers.

7 Related Work

This section discusses related work about MVVM or MV* overview studies.
Wongtanuwat et al. created a systematic guideline on detecting the correct-

ness when applying MVVM in Objective-C programs [40]. Weissenberg discusses
best practices and lessons learned using the MVVM pattern in an industrial
WPF application [38]. While these papers specifically discuss the MVVM pat-
tern, they are context-specific and do not analyze MVVM in a literature review.

Lou compared the MVC, MVP, and MVVM patterns for native Android app
architectures regarding testability, modifiability, and performance [22]. Similarly,
Sholichin et al. reviewed MVC, MVP, MVVM, and VIPER in the context of
iOS architectural patterns [31]. Further, Magics-Verkman et al. compared MVC,
MVVM, and MVI for testability and performance in iOS mobile application

https://orcid.org/0000-0002-8210-094X
https://orcid.org/0000-0002-9790-3702
https://orcid.org/0000-0002-4532-1460

Exploring Design Variants of the Model-View-ViewModel Pattern 15

development [23]. These studies used concrete implementations of MVVM. They
quantitatively compared them to other GUI architectural patterns for quality
attributes, while our study qualitatively analyses MVVM by a literature review.

Lappalainen and Kobayashi qualitatively compared MVC, MVP, and MVVM
by reviewing literature [21]. Syromiatnikov and Weyns selected several GUI ar-
chitectural patterns like MVVM, reviewed sources describing those patterns,
and qualitatively classified them as a landscape of GUI design patterns [35].
While these studies qualitatively review MVVM, they focus on a more extensive
landscape of GUI architectural patterns and use no systematic literature survey.

Daoudi et al. empirically studied the occurrence of MVC, MVP, or MVVM
in Android apps [5]. Chekhaba et al. introduced the machine learning tool Coach
to identify MVC, MVP, or MVVM in Android apps [4]. Unlike our study, they
do not qualitatively analyze design variants of MVVM using literature reviews.

Verdecchia et al. performed a systematic mixed-method empirical study on
Android app architectures, including semi-structured interviews, gray literature,
and white literature [36]. While they review the literature, our paper focuses
specifically on MVVM and analyses design aspects and trade-offs more deeply.

8 Conclusion

This paper presented an MLR with a qualitative analysis of white and gray liter-
ature about the MVVM pattern. We used the standard definition and standard
trade-offs of MVVM from familiar standard sources like Gossman’s original blog
post, which introduced MVVM. Based on a selection of 519 scholar entries and
523 websites, we filtered out 38 scholar entries and 125 websites, which extend
design aspects or trade-offs compared to the standard definition. We then ex-
tracted 76 additional design constructs, 16 additional benefits, and 15 additional
drawbacks. Finally, we categorized the design constructs into 29 design aspects
and briefly described a subset in this paper. We published a detailed replication
package with the results of the selection process, data extraction, and synthesis.

The synthesized design aspects and trade-offs provide an overview of the
usage variants of the MVVM pattern. Practitioners, like enterprise application
developers, can use them to have an explicit catalog of aspects that might be
interesting in concrete MVVM implementations. Researchers can also benefit
from this overview using the selected sources or the results of the replication
package when further studying MVVM.

Future work could study the extracted design aspects and trade-offs, sys-
tematically analyzing conflicts between design constructs and their associated
trade-offs. Such an analysis could lead to an assessment of the design constructs
and recommendations on which constructs to adopt and which to avoid. Ad-
ditionally, there is the potential to create formal pattern descriptions of both
the standard MVVM definition and a subset of relevant design variants. Fur-
ther, we will elaborate on the Humble View idea by applying the pattern in our
doctoral ViMoTest project, where the ViewModel provides a presentation-ready
abstraction by orienting directly on GUI widgets [9, 10].

16 Mario Fuksa , Sandro Speth , and Steffen Becker

References

1. Anderson, C.: The Model-View-ViewModel (MVVM) Design Pattern, pp. 461–499.
Apress, Berkeley, CA (2012). https://doi.org/10.1007/978-1-4302-3501-9 13

2. Brumfield, B., Cox, G., Hill, D., Noyes, B., Puleio, M., Shifflett, K.: Developer’s
Guide to Microsoft Prism 4: Building Modular MVVM Applications with Windows
Presentation Foundation and Microsoft Silverlight. Microsoft Press (2011), ISBN:
978-0-73565-610-9

3. Burns, K.: Introducing MVVM, pp. 127–140. Apress, Berkeley, CA (2012).
https://doi.org/10.1007/978-1-4302-4567-4 9

4. Chekhaba, C., Rebatchi, H., ElBoussaidi, G., Moha, N., Kpodjedo, S.: Coach:
classification-based architectural patterns detection in Android apps. In: Proceed-
ings of the 36th Annual ACM Symposium on Applied Computing. p. 1429–1438.
SAC ’21, Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3412841.3442018

5. Daoudi, A., ElBoussaidi, G., Moha, N., Kpodjedo, S.: An exploratory study
of MVC-based architectural patterns in Android apps. In: Proceedings of
the 34th ACM/SIGAPP Symposium on Applied Computing. p. 1711–1720.
SAC ’19, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3297280.3297447

6. Engelschall, R.S.: Hierarchical user interface component architecture. BoD–Books
on Demand (2018)

7. Fowler, M.: Presentation Model (Jul 2004), https://martinfowler.com/eaaDev/
PresentationModel.html, accessed: 2024-06-18

8. Fowler, M.: HumbleObject (Apr 2020), https://martinfowler.com/bliki/

HumbleObject.html, accessed: 2024-06-18
9. Fuksa, M.: ViMoTest: A Low Code Approach to Specify ViewModel-Based Tests

with a Projectional DSL Using JetBrains MPS. In: Proceedings of the 25th Interna-
tional Conference on Model Driven Engineering Languages and Systems: Compan-
ion Proceedings. p. 189–194. MODELS ’22, Association for Computing Machinery,
New York, NY, USA (2022). https://doi.org/10.1145/3550356.3558513

10. Fuksa, M., Speth, S., Becker, S.: Applicability of the ViMoTest Approach for Auto-
mated GUI Testing: A Field Study. In: 2023 ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems Companion (MODELS-C).
pp. 821–830 (2023). https://doi.org/10.1109/MODELS-C59198.2023.00131

11. Garćıa, R.F.: MVVM: Model–View–ViewModel, pp. 145–224. Apress, Berkeley,
CA (2023). https://doi.org/10.1007/978-1-4842-9069-9 4

12. Garofalo, R.: Building enterprise applications with Windows Presentation Foun-
dation and the model view ViewModel Pattern. Microsoft Press (2011), ISBN:
978-0-73565-092-3

13. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey
literature and conducting multivocal literature reviews in software en-
gineering. Information and Software Technology 106, 101–121 (2019).
https://doi.org/10.1016/j.infsof.2018.09.006

14. Google, n.d., O.H.A.: Guide to app architecture (Feb 2021), https://developer.
android.com/jetpack/guide, accessed: 2024-06-18

15. Google, n.d., O.H.A.: LiveData overview (Feb 2024), https://developer.

android.com/topic/libraries/architecture/livedata, accessed: 2024-06-18
16. Gossman, J.: Introduction to model/view/viewmodel pattern for building wpf apps

(Oct 2005), https://docs.microsoft.com/de-de/archive/blogs/johngossman/

https://orcid.org/0000-0002-8210-094X
https://orcid.org/0000-0002-9790-3702
https://orcid.org/0000-0002-4532-1460
https://doi.org/10.1007/978-1-4302-3501-9_13
https://doi.org/10.1007/978-1-4302-4567-4_9
https://doi.org/10.1145/3412841.3442018
https://doi.org/10.1145/3297280.3297447
https://martinfowler.com/eaaDev/PresentationModel.html
https://martinfowler.com/eaaDev/PresentationModel.html
https://martinfowler.com/bliki/HumbleObject.html
https://martinfowler.com/bliki/HumbleObject.html
https://doi.org/10.1145/3550356.3558513
https://doi.org/10.1109/MODELS-C59198.2023.00131
https://doi.org/10.1007/978-1-4842-9069-9_4
https://doi.org/10.1016/j.infsof.2018.09.006
https://developer.android.com/jetpack/guide
https://developer.android.com/jetpack/guide
https://developer.android.com/topic/libraries/architecture/livedata
https://developer.android.com/topic/libraries/architecture/livedata
https://docs.microsoft.com/de-de/archive/blogs/johngossman/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps

Exploring Design Variants of the Model-View-ViewModel Pattern 17

introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps,
accessed: 2024-06-18

17. Gossman, J.: Advantages and disadvantages of M-V-VM (Apr 2006),
https://docs.microsoft.com/en-us/archive/blogs/johngossman/

advantages-and-disadvantages-of-m-v-vm, accessed: 2024-06-18
18. Hall, G.M.: The ViewModel, pp. 81–110. Apress, Berkeley, CA (2010).

https://doi.org/10.1007/978-1-4302-3163-9 4
19. Kay, R.M.: How to Use Model-View-ViewModel on Android Like a Pro. https:

//www.freecodecamp.org/news/model-view-viewmodel-android-tutorial (Dec
2020), accessed: 2024-06-18

20. Kouraklis, J.: MVVM as Design Pattern, pp. 1–12. Apress, Berkeley, CA (2016).
https://doi.org/10.1007/978-1-4842-2214-0 1

21. Lappalainen, S., Kobayashi, T.: A Pattern Language for MVC Deriva-
tives. In: Proc. 6th Asian Conference on Pattern Languages of Pro-
grams (2017), http://www.washi.cs.waseda.ac.jp/wp-content/uploads/2017/
03/Sami-Lappalainen.pdf, accessed: 2024-06-18

22. Lou, T.: A Comparison of Android Native App Architecture – MVC, MVP and
MVVM. Master’s thesis, Aalto University. School of Science (2016), http://urn.
fi/URN:NBN:fi:aalto-201610124940

23. Magics-Verkman, H., Zmaranda, D.R., Győrödi, C.A., Győrödi, R.c.: A Com-
parison of Architectural Patterns for Testability and Performance Quality for
iOS Mobile Applications Development. In: 2023 17th International Confer-
ence on Engineering of Modern Electric Systems (EMES). pp. 1–4 (2023).
https://doi.org/10.1109/EMES58375.2023.10171619

24. Manferdini, M.: MVVM in SwiftUI for a Better Architecture. https://

matteomanferdini.com/mvvm-swiftui (Dec 2023), accessed: 2024-06-18
25. Microsoft: The MVVM Pattern (2012), https://learn.microsoft.com/en-us/

previous-versions/msp-n-p/hh848246(v=pandp.10), accessed: 2024-06-18
26. Microsoft: Model-View-ViewModel (MVVM). https://learn.microsoft.com/

en-us/dotnet/architecture/maui/mvvm (2022), accessed: 2024-06-18
27. Mishra, A.: The MVVM Architectural Pattern, pp. 43–60. Apress, Berkeley, CA

(2017). https://doi.org/10.1007/978-1-4842-2689-6 3
28. Moliński, D.: Flutter architecture: implementing the MVVM

pattern (Feb 2022), https://fivedottwelve.com/blog/

flutter-architecture-implementing-the-mvvm-pattern, accessed: 2024-06-18
29. MvvmCross: Introduction to Model/View/ViewModel pattern for build-

ing WPF apps. https://www.mvvmcross.com/documentation/fundamentals/

viewmodel-lifecycle (Aug 2023), accessed: 2024-06-18
30. Rock, V.: Using MVVM for enhanced cross platform de-

velopment of mobile and desktop application. Master’s the-
sis, Master’s Thesis (2015), https://diglib.tugraz.at/

using-mvvm-for-enhanced-cross-platform-development-of-mobile-and%

2Ddesktop-applications-2015, accessed: 2024-06-18
31. Sholichin, F., Isa, M.A.B., Halim, S.A., Harun, M.F.B.: Review Of IOs Archi-

tectural Pattern For Testability, Modifiability, And Performance Quality. Jour-
nal Of Theoretical And Applied Information Technology 97(15) (2019), https:
//www.jatit.org/volumes/Vol97No15/3Vol97No15.pdf, accessed: 2024-06-18

32. Singh, L.: RMVRVM – A Paradigm for Creating Energy Efficient User Applica-
tions Connected to Cloud through REST API. In: 15th Innovations in Software
Engineering Conference. ISEC 2022, Association for Computing Machinery, New
York, NY, USA (2022). https://doi.org/10.1145/3511430.3511434

https://docs.microsoft.com/de-de/archive/blogs/johngossman/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps
https://docs.microsoft.com/de-de/archive/blogs/johngossman/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps
https://docs.microsoft.com/de-de/archive/blogs/johngossman/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps
https://docs.microsoft.com/en-us/archive/blogs/johngossman/advantages-and-disadvantages-of-m-v-vm
https://docs.microsoft.com/en-us/archive/blogs/johngossman/advantages-and-disadvantages-of-m-v-vm
https://doi.org/10.1007/978-1-4302-3163-9_4
https://www.freecodecamp.org/news/model-view-viewmodel-android-tutorial
https://www.freecodecamp.org/news/model-view-viewmodel-android-tutorial
https://doi.org/10.1007/978-1-4842-2214-0_1
http://www.washi.cs.waseda.ac.jp/wp-content/uploads/2017/03/Sami-Lappalainen.pdf
http://www.washi.cs.waseda.ac.jp/wp-content/uploads/2017/03/Sami-Lappalainen.pdf
http://urn.fi/URN:NBN:fi:aalto-201610124940
http://urn.fi/URN:NBN:fi:aalto-201610124940
https://doi.org/10.1109/EMES58375.2023.10171619
https://matteomanferdini.com/mvvm-swiftui
https://matteomanferdini.com/mvvm-swiftui
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://learn.microsoft.com/en-us/dotnet/architecture/maui/mvvm
https://learn.microsoft.com/en-us/dotnet/architecture/maui/mvvm
https://doi.org/10.1007/978-1-4842-2689-6_3
https://fivedottwelve.com/blog/flutter-architecture-implementing-the-mvvm-pattern
https://fivedottwelve.com/blog/flutter-architecture-implementing-the-mvvm-pattern
https://www.mvvmcross.com/documentation/fundamentals/viewmodel-lifecycle
https://www.mvvmcross.com/documentation/fundamentals/viewmodel-lifecycle
https://diglib.tugraz.at/using-mvvm-for-enhanced-cross-platform-development-of-mobile-and%2Ddesktop-applications-2015
https://diglib.tugraz.at/using-mvvm-for-enhanced-cross-platform-development-of-mobile-and%2Ddesktop-applications-2015
https://diglib.tugraz.at/using-mvvm-for-enhanced-cross-platform-development-of-mobile-and%2Ddesktop-applications-2015
https://www.jatit.org/volumes/Vol97No15/3Vol97No15.pdf
https://www.jatit.org/volumes/Vol97No15/3Vol97No15.pdf
https://doi.org/10.1145/3511430.3511434

18 Mario Fuksa , Sandro Speth , and Steffen Becker

33. Smith, J.: Patterns - WPF Apps With The Model-
View-ViewModel Design Pattern (2009), https://learn.

microsoft.com/en-us/archive/msdn-magazine/2009/february/

patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern, ac-
cessed: 2024-06-18

34. Stein, G.: Introduction to Model/View/ViewModel pattern for building WPF
apps. https://www.linkedin.com/pulse/mvvm-fashion-trend-gregory-stein

(Mar 2021), accessed: 2024-06-18
35. Syromiatnikov, A., Weyns, D.: A Journey through the Land of Model-View-Design

Patterns. In: 2014 IEEE/IFIP Conference on Software Architecture. pp. 21–30
(2014). https://doi.org/10.1109/WICSA.2014.13

36. Verdecchia, R., Malavolta, I., Lago, P.: Guidelines for architecting an-
droid apps: A mixed-method empirical study. In: 2019 IEEE Interna-
tional Conference on Software Architecture (ICSA). pp. 141–150 (2019).
https://doi.org/10.1109/ICSA.2019.00023

37. Vice, R., Siddiqi, M.S.: MVVM Survival Guide for Enterprise Architectures in
Silverlight and WPF. Packt Publishing Ltd (2012), ISBN: 978-1-84968-342-5

38. Weissenberg, C.: Model-View Design Patterns. Tagungsband p. 102 (2019), ISBN:
978-3-00-064236-4

39. Wisnuadhi, B., Munawar, G., Wahyu, U.: Performance Comparison of Native An-
droid Application on MVP and MVVM. In: Proceedings of the International
Seminar of Science and Applied Technology (ISSAT 2020). pp. 276–282. At-
lantis Press (2020). https://doi.org/10.2991/aer.k.201221.047, https://doi.org/
10.2991/aer.k.201221.047

40. Wongtanuwat, W., Senivongse, T.: Detection of Violation of MVVM Design
Pattern in Objective-C Programs. In: Proceedings of the 8th International
Conference on Computer and Communications Management. p. 54–58. IC-
CCM ’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3411174.3411193

41. Zarifis, K., Papakonstantinou, Y.: In-depth Survey of MVVM Web Application
Frameworks. Tech. rep., Technical report of UCSDSE, University of California
(2016), https://dbucsd.github.io/paperpdfs/2016_4.pdf, accessed: 2024-06-18

https://orcid.org/0000-0002-8210-094X
https://orcid.org/0000-0002-9790-3702
https://orcid.org/0000-0002-4532-1460
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://www.linkedin.com/pulse/mvvm-fashion-trend-gregory-stein
https://doi.org/10.1109/WICSA.2014.13
https://doi.org/10.1109/ICSA.2019.00023
https://doi.org/10.2991/aer.k.201221.047
https://doi.org/10.2991/aer.k.201221.047
https://doi.org/10.2991/aer.k.201221.047
https://doi.org/10.1145/3411174.3411193
https://dbucsd.github.io/paperpdfs/2016_4.pdf

	MVVM Revisited: Exploring Design Variants of the Model-View-ViewModel Pattern

