
Enhancing API Labelling with BERT and GPT:
An Exploratory Study

Gabriel Morais1, Edwin Lemelin1,2, Mehdi Adda1, and Dominik Bork1,3

1 Université du Québec à Rimouski, Lévis, QC, G6V 1L8, Canada
{gabrielglauber.morais,edwin.lemelin, mehdi_adda}@uqar.ca

2 Université Laval, Québec, QC, G1V 0A6, Canada
3 Business Informatics Group, TU Wien, Vienna, Austria

dominik.bork@tuwien.ac.at

Abstract. Application Programming Interfaces (APIs) enable interac-
tion, integration, and interoperability among applications and services,
contributing to their adoption and proliferation. However, discovering
APIs has relied on manual, time-consuming, costly processes that jeop-
ardize their reuse potential and accentuate the need for effective API
retrieval mechanisms. Leveraging the OpenAPI Specification as a basis,
this paper presents an exploratory study that combines BERT and GPT
machine learning models to propose a novel API classifier. Our investiga-
tion explored the zero-shot learning capabilities of GPT–4 and GPT–3.5
using relevant terms extracted from API descriptions using BERT. The
evaluation of our approach on two datasets comprising 940 API descrip-
tions sourced from public repositories yielded an F1-score of 100% in the
small dataset (17 APIs) and 39.1% in the large dataset (923 APIs). These
results surpass state-of-the-art on the small dataset with an impressive
29-point improvement. The large dataset showed GPT can suggest labels
not in the provided list. Manual analysis revealed that GPT’s suggested
labels fit the API intent better in 18 out of 20 cases, highlighting its
potential for unknown classes and mismatch detection. This emphasizes
the need to improve dataset quality and availability for API research.
Our findings show the potential of automated API retrieval and open
avenues for future research.

Keywords: API classification, OpenAPI Specification, GPT, BERT.

1 Introduction

API descriptions are essential in software engineering as they serve as docu-
mentation [7], enabling developers to understand and interact with them ef-
fectively [21]. Acting as a contract between different components, they ensure
seamless integration and rapid development. In this context, the OpenAPI Spec-
ification (OAS) [15] standard provides a machine-readable format for describing
RESTful APIs, allowing automation capabilities, e.g., code generation [7].

Getting a general understanding of an API is the most critical task when
mining API for use in specific contexts [7, 21]. In most cases, this task is executed
manually [10], and the number of APIs to explore could impede its completion.

2 G. Morais et al.

The first step toward an effective retrieval mechanism is organizing and clas-
sifying data. Automatic text classification is a long-standing research field [18],
and recent advances in machine learning, e.g., large language models (LLM),
have opened up new avenues to increase the accuracy of automated text classi-
fication approaches [4].

Automatically processing OpenAPI documents (OADs) could enhance API
discovery and cope with time-consuming manual exploration. Nevertheless, OADs
are specific textual documents that combine structured data with a blend of
general and technical lexicons. Previous works have explored using OADs and
natural language processing (NPL) techniques to improve API discovery [33, 23,
35]. However, the potential of labelling APIs from OADs using current state-of-
the-art LLM algorithms is a significant area yet to be fully explored, with the
potential to make a substantial impact in the field.

In this exploratory study, we present preliminary results of applying GPT–4
and GPT–3.5 in combination with KeyBERT to label OADs. The explored ap-
proach used KeyBERT to extract relevant words from OADs, which were then
passed to GPT through a prompt to find the corresponding label of the doc-
ument. We relied on KeyBERT to help us enhance prompt engineering, cope
with prompting payload restrictions, and limit costs related to OpenAI API
consumption.

We experimented with a small labelled dataset comprising 17 OADs used
in Microservices research [3]. Our approach achieved an F1-score of 100 in this
dataset, an improvement of 29 points from previous works [23]. Encouraged by
these results, we assessed the approach’s generalizability using a dataset of 923
OADs from the APIs.Guru repository [2] and achieved an F1-score of 39.1.

The experiments further revealed that data cleaning is not required, as words
extracted by KeyBERT could be used as-is. Similarly, a manual analysis of la-
belling mismatches showed that 18 out of the 20 analyzed mismatches were
caused by inappropriate labels on the apisguru dataset, unveiling the need for
accurate datasets to support machine-learning approaches in API labelling re-
search, and new application perspectives, e.g., applying GPT to mislabelling
detection. All the artifacts used and produced during our experiments and eval-
uation are available at this paper’s code companion [24].

The remainder of this paper is organized as follows. Section 2 provides the
essential background to understand the proposed approach. Section 3 introduces
our approach. Section 4 presents the results obtained. These results are discussed
in Section 5, along with the impacts of our study. Finally, Sections 6 and 7 provide
the future research agenda and concluding remarks, respectively.

2 Background

This section introduces concepts that support readers’ understanding of the
proposed approach. First, we present the OpenAPI Specification applied to API
descriptions (2.1). Then, we provide a high-level description of the Transformer

Enhancing API Labelling with BERT and GPT 3

machine learning architecture (2.2), providing basic knowledge to understand
how BERT and GPT models work.

2.1 OpenAPI Specification

The OpenAPI Specification (OAS) [15], formerly known as Swagger Specifi-
cation, is a formal specification defining a standard to describe, document, and
communicate RESTful APIs. OAS-based API descriptions are formalized hierar-
chically using a key-value approach, where the keys are the OAS parameters, en-
suring consistency throughout different OAS-based API descriptions [30]. These
descriptions are typically serialized in YAML Ain’t Markup Language (YAML)
or JavaScript Object Notation (JSON), which makes them machine-readable.

OAS includes general information about the API, such as its paths, opera-
tions, input and outputs, and security details. The values associated with OAS
keys can be in any language and follow any standard. Often, they are represented
as natural language terms using programming languages’ conventions. [7]. List-
ing 1 shows an excerpt of an API described using OAS in YAML.

While the OpenAPI Specification provides various benefits, its effectiveness
depends on the accuracy and diligence of the individuals creating the API de-
scriptions [13]. Human errors, oversight, or lack of attention to detail during the
API documentation process can result in inaccurate or incomplete descriptions,
leading to discrepancies between the documented API and its actual implemen-
tation. This risk of unreliability is not limited to using OAS for API descriptions
but seems inherent to API documentation [37].

2.2 Transformers-based ML Models

Transformer is a deep learning architecture built on the attention mechanism
and comprising two main layers: Encoders, which create a representation of the
input data, and decoders, which generate the output sequence step by step [38].
These components enable the Transformer architecture to handle sequence-to-
sequence tasks, such as machine translation, text classification, and generation.

Transformer encoders and decoders are almost similar; both have a self-
attention mechanism and a feed-forward network. However, decoders have an
additional sub-layer that applies self-attention to encoders’ outputs. The self-
attention mechanism captures long-distance context without a sequential de-
pendency, allowing each position in the sequence to attend to other positions,
capturing long-range dependencies [25]. This additional self-attention mechanism
copes with decoders limitation of accessing only previous positions. Sequence or-
dering is captured through a positional embedding, which is added to the input
embeddings in the encoder and decoder stacks to provide information about the
sequence’s relative or absolute tokens’ position. Mainly, encoders are helpful for
text classification tasks, while decoders are helpful for text generation tasks.

Generative Pre-trained Transformer (GPT) [31] is a state-of-the-art
deep learning model for NLP tasks built upon decoders. It is trained in two steps,

4 G. Morais et al.

openapi: 3.0.1
info:

title: Checkout API
version: v1

paths:
"/api/v1/Checkout":

get:
tags:
- Checkout
parameters:
- name: userName

in: query
schema:

type: string
nullable: true

responses:
'200':

Listing 1: EShopOnContainers Checkout API’s
OAD

swagger
api
apis
json
yaml
apisguru
openapi
$ref
ref
jsonschemadialect
servers
paths
webhooks
components
security
tags
...

Listing 2: Ignored terms

first by unsupervised generative pre-training of a language model using a massive
amount of unlabelled text data, then by a supervised discriminative fine-tuning
of the pre-trained model on specific downstream tasks. During fine-tuning, the
model adapts its learned representations to suit the task at hand, enabling it to
improve performance on various NLP benchmarks.

GPT–3 is a significant improvement of the GPT series that introduced a 175
billion parameters model, 100 times bigger than its predecessor (GPT–2). GPT–3
relies on the model size to learn more from diversified sources, resulting in models
that can achieve various tasks without task-specific training, starting the era of
large language models (LLMs) [16]. GPT–3 allows users to bypass the supervised
fine-tuning of the pre-trained model by directly providing instructions during
inference, such as a task description and output examples [6]. This approach
is called in-context learning. It dramatically reduces fine-tuning efforts without
losing the model’s accuracy. GPT–4 is the last evolution of the GPT series,
comprising 170 trillion parameters and supporting text and image inputs [1].
OpenAI made GPT–3 and GPT–4 available through an API, allowing developers
and businesses to access and utilize the models’ capabilities on a broader scale,
contributing to their popularity and hype.

Bidirectional Encoder Representations from Transformers (BERT)
is an NLP model composed of 340 million parameters and trained on an extensive
dataset of 3.3 billion words [9]. It is considered a state-of-the-art technique in
various NLP tasks [22]. It employs a multi-layer Transformer-Encoder architec-
ture with self-attention mechanisms and feed-forward neural networks, following
a two-step process of pre-training and fine-tuning. The pre-training process re-

Enhancing API Labelling with BERT and GPT 5

Relevant
Words

Extraction

Prompt
Construction

Querying
the

Classifier

(1) (2) (3)

OAD Ignored
terms

Target
labels

Relevant
words Prompt Label

Fig. 1: Overview of our BERT and GPT-based API Labelling Approach

lies on a masked language modelling task, where specific tokens are randomly
masked. The model then recovers these masked tokens by considering the en-
coding vectors from a bidirectional Transformer, allowing it to understand the
context from both the left and right sides. The fine-tuning process is achieved
by training with reduced resources and smaller datasets to optimize its perfor-
mance for specific tasks. BERT comes in different sizes and has variants called
the BERT family [22].

In summary, each model has strengths and limitations. The choice of the
model depends on the problem, use case, and the available data. Recently, the
combination of GPT and BERT has mutually improved their abilities to solve
question-answering tasks [17]. This work inspired our approach.

3 Approach

Our approach, as depicted in Fig. 1, offers a comprehensive solution for API
classification. Given an OpenAPI document (OAD), a list of terms to be ig-
nored, and a list of target labels, our approach proceeds through a series of
systematic steps to achieve classification. First, we extract a specific number of
relevant words from the API description while excluding OAS terms and English
stopwords from the provided exclusion list (1). Next, we build a classification
prompt using the extracted relevant words and a list of target labels (2). Finally,
the classifier is queried using the generated prompt, assigning the OAD to its
corresponding label (3).

3.1 Relevant Words Extraction

To extract relevant words from an OpenAPI Document, it initially needs to be
parsed from YAML or JSON and converted into a single string of lowercase
words. Then, unique words within the text that are not in the list of terms to
ignore are counted. This list comprises common English stop words and OAS key
names (see Listing 2). For recall, API documents formalized using the OpenAPI

6 G. Morais et al.

system : "You will receive keywords extracted from OpenAPI documents.
Your task is to classify the document into one of the following
categories: {target_labels}.
Respond only with the category name."
user : "{relevant_words}"

Listing 3: GPT Prompt Template

standard follow a key-value approach, with keys defined within the specification,
leading to the recurrence of these terms (keys) in OADs.

As an illustrative example, by ignoring these words, the OAD excerpt from
Listing 1 contains nine unique words: cancel, eshoponcontainers, header,
info, ordering, orders, requestid, service, and v1. The number of relevant
words to extract is determined as 20% of the total count of unique terms in the
document, following Pareto’s principle [34], also known as the 80/20 rule, which
states that roughly 80% of the effects come from 20% of the causes. Thus, we
considered that 20% of the OAD content is enough to characterize it.

Keywords are retrieved using KeyBERT [11], a Python package that leverages
BERT word embeddings. It extracts terms or sentences that are most similar
to the document based on cosine similarity. Using KeyBERT, we provide the
number of words to extract and the list of terms to exclude, as shown in Listing 2.
This ensures that the keywords obtained are significant. Once the process is
finished, these words are compiled into an enumeration for use in the prompt.

3.2 Prompt Construction

The large language model prompt used to classify OADs is constructed by com-
bining the relevant words extracted with KeyBERT and user-defined target la-
bels. The prompt comprises two parts: system and user. The motive for this
segmentation is explained in the following Subsection. We use basic string con-
catenation techniques to incorporate the user’s input in this configurable prompt.
Listing 3 presents the template used in our approach. The characters in black
are fixed, while those in orange and magenta correspond to the variable names
of target labels and relevant words, respectively. This template has proven to
work best in our testing.

3.3 Querying the Classifier

Both the system and user segments of the prompt are sent to GPT using Ope-
nAI’s API and its chat completion endpoint. The system message conveys high-
level information or context to guide the model’s behaviour. In contrast, the user
part contains the direct inputs from the users, representing prompts they want
the model to respond to [28]. Thus, the GPT API is queried using this prompt,
and the response is trimmed and converted to lowercase. Only the first label

Enhancing API Labelling with BERT and GPT 7

system : "You will receive keywords extracted from OpenAPI documents.
Your task is to classify the document into one of the following
categories: audit, rooting, cart, frontend, order, catalog, user,
currency, location, emailcontact, marketing, payment, product,
recommendation, shipping.
Respond only with the category name."
user : "checkoutordercommand,int32,checkout,info"
assistant : "order"

Listing 4: EShopOnContainers Checkout API Prompt

is selected if the response includes an enumeration of labels. Listing 4 shows
the query employed to classify the EShopOnContainers OAD file, depicted in
Listing 1. In this classification example, the assistant’s response is accurate.

3.4 Experiment settings

Datasets – In this study, we exploited two datasets used in previous works [23].
The first dataset, named eshopping, is an extension of the one used by Morais
et al. [23]. It comprises 17 API documents describing four microservices-based
systems from the e-shopping domain proposed by Assunçao et al.[3]: EshopOn-
Containers, Eshop-netcore, Shopping Cart, and Socksshop. These API documents
were originally unlabelled but could be matched to functional classes identified
by Mendonça et al. [20]. They extracted 14 features (Frontend, User, Payment,
Catalog, Cart, Order, Product, EmailContact, Shipping, Marketing, Recommen-
dation, Audit, Currency, and Location) from six e-shopping microservices archi-
tectures (cf. [3]). We used these features as the target labels in our controlled
experiments.

The second dataset, apisguru, comprises data extracted from APIs.Guru [2],
a repository of public API documentation containing 38264 API documents for-
malized using the OpenAPI standard, 2117 defined using OAS version 2.0, and
1709 defined using version 3.0. APIs.Guru allows adding a particular param-
eter to API documents, the apisguru-categories tag, allowing contributors to
manually specify a tag related to the functionality or domain of the described
API, such as financial, media, or entertainment. Although this parameter is not
mandatory, we noted that 96 % (3658) of the API documents in this repository
were associated with at least one tag.

We identified 31 categories that we used as labels to which the API documents
should be classified. To enhance the automatic analysis of classification results,
we excluded OADs having multiple tags (579 OADs). Furthermore, a random
exploration of the dataset revealed significant imbalances among certain cate-
gories. For instance, the category cloud contained 2157 documents, accounting
4 As of May 2024. This number excludes documents we were unable to open due to

various parsing errors.

8 G. Morais et al.

Table 1: Summary of the Experiment’s Settings.

Datasets KeyBERT GPT

eshopping
(17 OADs, 15 labels) msmarco-distilbert-cos-v5

gpt-3.5-turbo

apisguru
(923 OADs, 31 labels) gpt-4-turbo

for 56 % of the entire dataset. Furthermore, the cloud label seemed more related
to the API provider industry rather than to the actual functionality delivered by
the API described in the OAD. Thus, we decided to exclude APIs tagged as cloud
to maintain the reliability of our experiment. The final dataset consisted of 923
OADs. We relied on this dataset to evaluate the generalizability of our approach.

Tools – All experiments were performed on a Google Colaboratory [5] Notebook
using the free plan with the following specifications: Intel Xeon CPU 2.20 GHz,
Tesla T4 GPU, and 13GB of RAM. Datasets management was handled with
Pandas [19], while NumPy [12] and Scikit-Learn [29] were used for metrics calcu-
lation. The extraction of relevant words was performed using KeyBERT and the
pre-trained sentence transformer model msmarco-distilbert-cos-v5 [14, 32].
The models used for classifying OADs were gpt-3.5-turbo [26] and gpt-4-turbo
[27] for both the small and large datasets. Table 1 summarizes the experiment
settings.

4 Results

In this section, we present the results of our experiments from the eshopping
dataset, which consists of 17 OADs and 15 labels, as well as the applicability
results from the apisguru dataset, which comprises 923 OADs and 31 labels. We
tested each dataset with GPT–3.5 and GPT–4 in order to assess the model’s
respective capabilities in the same API classification task. To evaluate the per-
formance of our classification method, we used macro precision (PrecisionM),
recall (RecallM), and F1-score (F1–ScoreM) metrics [36], ensuring that each
class of our imbalanced datasets contributed equally to the overall results. All
the compiled data can be found in Table 2. The findings provide valuable insights
into the effectiveness of the proposed approach and shed light on the impact of
various factors on API classification accuracy.

4.1 Overall Results

Our approach exhibited better performance than those obtained by Morais et
al. [23] in a similar dataset (16 OADs); our eshopping-dataset was an extension
of theirs. Indeed, our approach achieved a 100% F1-Score, whereas they obtained
71%.

Enhancing API Labelling with BERT and GPT 9

Table 2: Results of the experiments.

Model Dataset P recisionM RecallM F 1–ScoreM

gpt-3.5-turbo
eshopping 100.00 100.00 100.00

apisguru 47.28 38.62 38.58

gpt-4-turbo
eshopping 100.00 100.00 100.00

apisguru 47.75 40.71 39.12

Finding 1. The BERT-GPT API Classifier outperformed previous works
by 29 points.

During prompt construction, we observed that the words extracted by Key-
BERT comprised composed terms, such as orderingapi, ordernumber, and or-
deritems. We reproduced the experiment of Morais et al. [23] and found out that
their approach could not handle such terms. Thus, we found that GPT was able
to handle complex terms (not respecting syntactic rules) without data prepro-
cessing. The same extends to acronyms. This finding could explain the precision
improvement achieved by our approach.

Finding 2. The approach avoids the need for complex data preprocessing
and is able to adapt to lexicon diversity and word structure in OADs.

Results also indicate that in our BERT-GPT classification method, the per-
formance improvement from GPT–3.5 to GPT–4 is minimal, with both models
achieving an F1-score of 100 on the eshopping dataset and approximately 39 on
the apisguru dataset. Indeed, accounting for the variability and randomness in
LLMs behaviour [8], the observed difference between the two versions of GPT is
not significant enough to conclude that GPT–4 outperforms GPT–3.5.

Finding 3. Using GPT–4 negligibly improved the approach’s perfor-
mance.

4.2 Evaluation of Generalizability

We evaluated the generalizability of our approach using a more extensive and
diverse dataset, the apisguru dataset, including 923 OADs from various sources
and domains, providing an extended range of scenarios for evaluation. Indeed,
the dataset’s diversity, encompassing domains such as Finance, Education, En-
tertainment, and more, allowed us to examine how well the approach generalizes
across different application domains. This enabled us to assess the approach’s

10 G. Morais et al.

performance in the face of variable data, providing valuable information on its
practicality in real-world settings.

The experiment yielded key insights. We observed that the BERT-GPT clas-
sifier performance had substantially declined, dropping from an F1-score of 100
to around 39 for both GPT–3.5 and GPT–4. By manually analyzing 20 random
labelling mismatches, we discovered that 18 of them were caused by inappropri-
ate labels on the apisguru dataset. We also observed that GPT proposed addi-
tional labels not in the provided list, which, in most cases, were more accurate
than those associated with OADs in the source dataset.

Table 3 shows a sample of the analyzed mismatches. In the first row, the
player, sportdata, mbl and nfldata keywords point to the sports label, thus spec-
ifying the original entertainment label. In the second row, the zipcode, area and
getzipinfo keywords clearly point to a location functionality, not a developer tool.
In the third row, the proxy and vnp keywords point to a security feature, not a
location one. The same is observed in the fourth and fifth rows where charity,
and marketing, advertise, ads and promotionsale keywords point respectively to
charity and marketing labels, not to e-commerce.

These observations suggest that the classifier’s performance might not be
indicative of its actual potential due to the dataset’s labelling inaccuracies.

Table 3: Sample of analyzed mismatches.
Keywords Labels

APIGuru GPT-3.5 GPT-4
rotoballerarticlesbyplayer,rotoballerarticlesbyplayerid,playerinfo,
rotoballer,mlb,sportsdata,player,players,nfldata,entries,
rotoballerarticles,playerid,profile_image,apikeyheader,info

entertainment sport_data sport_data

zipcode,zip,interzoid,getzipinfo,providername,code,info,detailed,
getzipcodeinfo,profile_image,developer_tools,www,
areasquaremiles,city,information,area

developer_tools location location

ip2proxy,ip2location,proxies,proxy,profile_image,px2,px1,ip,px9,
proxytype,vpn,px10,server,isproxy,providername,px11,lookup,ipv4 location security security

api_charity,charity_org,commerce_charity_v1_oas3,api_auth,array,
api_scope,charity_org_id,charityorg,www,charityorgid,charityorgs,
ebay_gb,charity,website,ebay_us,charitysearchresponse,org,com,
providername,clientcredentials,ebay,charitable,support,link,users,
marketplace,supported,application,profile_image,twitter,assistance,
basepath,help,imageurl,search,user,servicename,implementation,
page,html,access,errorid,10,subdomain,individual,accessing,server,
ecommerce,developers,header,helps,associated

ecommerce charity charity

api_marketing,marketing,sell_marketing_v1_oas3,promote,advertise,
promotes,promoting,ebay_it,item_promotion,ebay_au,promotions,
promotional,promotionsale,ads,ebay,ebay_us,marketplaceid,selling,
ebay_fr,ebay_de,ebay_gb,bulk_update_ads_bid_by_listing_id,
promotion_name,promotiondetail,supportedmarketplaces,sales
promotion_type,create_ads_by_inventory_reference,teasers,attract,
bulk_create_ads_by_listing_id,promotionreportdetail,marketplace,
bulk_update_ads_bid_by_inventory_reference,advertised,
bulk_create_ads_by_inventory_reference,ebay_es,sells,
listing_quantity_sold,advertising_eligibility,promotion,
get_ads_by_inventory_reference,promoted,promotiontype,
bulk_update_ads_status_by_listing_id,promotiontypeenum,
ad_campaign,promotionid,active_seller_count,marketplace_id

ecommerce marketing marketing

Enhancing API Labelling with BERT and GPT 11

Finding 4. GPT provided additional labels from those provided by the
user, opening opportunities to handle APIs belonging to unknown classes
or improving the precision in classifying APIs.

5 Discussion

The findings of our study hold several implications for API classification. First,
our experiment shows the potential of the combined BERT-base and GPT-based
classifier in accurately labelling API descriptions. The approach demonstrated
high accuracy rates on a controlled dataset, and the evaluation of its generaliz-
ability offered promising prospects for its application to solve practical problems.

Second, the experiments demonstrated GPT’s capacity to handle acronyms,
abbreviations and composed terms without complex data preprocessing. Indeed,
GPT directly processed the terms extracted from API descriptions, which al-
lowed it to effortlessly adapt to the diverse terminologies and structures in the
OADs.

Third, findings demonstrated the limited performance increase between GPT–
4 and GPT–3.5 (+0.54 for the F1-Score). However, one must consider additional
aspects when choosing between using one or the other, e.g., model utilization
costs. GPT–4 was 20 times more expensive than GPT-3.5 at the time of our
experiments. Therefore, the marginal performance gain of GPT–4 must be care-
fully considered in light of its increased costs.

Fourth, findings demonstrated the approach’s capability to suggest alterna-
tive labels when judged more representative of the API intent, which dropped
the approach accuracy on the apisguru dataset. Further research, particularly
time-consuming manual evaluation, is required to dive deeper and provide con-
clusive answers to the extent to which the quality in the apisguru dataset causes
the performance drop—which is what we currently can only hypothesize based
on our random sample tests. Nevertheless, GPT suggestions of alternative labels
open exciting research opportunities to explore applying the proposed approach
to identifying unknown labels, detecting mislabelling, and improving the preci-
sion in existing API classification approaches.

Finally, the experiments were conducted with a limited sample of API doc-
uments, and their characteristics may only partially represent how OADs are
created. We relied on specific ML pre-trained models, introducing limitations
inherent to these models. Additionally, the effectiveness of the classification may
be influenced by the prompt used to query the classifier. The lack of transparency
in how GPT arrives at its decisions, also known as the “black-box” nature, makes
it challenging to interpret the specific factors or features that heavily influence
the classification outcomes [8, 22].

Consequently, our ability to validate and explain individual classifications
may be restricted. Without a comprehensive understanding of GPT’s decision-
making process, we cannot ascertain the precise reasons behind its classifica-
tions. We could rely on prompt instructions to unveil the rationale behind each

12 G. Morais et al.

labelling. However, it would require a manual, time-consuming analysis of each
explanation, which is out of the scope of this exploratory study. This lack of ex-
plainability of GPT choices may introduce an element of uncertainty and limit
the extent to which we can fully trust and interpret these experiments’ results.

Despite employing a quantitative approach, the exploratory nature of our
study allowed for some level of subjectivity in data interpretation. The use of
automated algorithms and data processing techniques aimed to reduce bias;
however, the potential for subjective decisions in data handling and analysis
remains a limitation to consider when interpreting the results.

6 Future Plans

This exploratory study unveiled various challenges and perspectives toward ap-
plying LLM for API labelling using OpenAPI documents. A critical root chal-
lenge in this context is the creation of a larger curated dataset that allows re-
searchers to evaluate the performance of LLM-based approaches in this task
comprehensively. Therefore, we are building a process and tool to support the
creation of such a dataset. Besides, using a proprietary LLM model imposes us-
age limitations induced by costs, and accessing these models through an API
restricts the size of the prompts due to payload limitations. To cope with these
challenges, we are currently exploring using open-source LLMs (e.g., LLAMA3,
Gemma 2, Mistral, and Mixtral) deployed locally, working with the hypothesis
that doing so could simplify the approach by avoiding the need to restrain the
data sent to the LLM model, i.e., eliminating the use of KeyBERT to limit the
amount of sent data. Similarly, we are collaborating with an industry partner
to collect evidence of the effectiveness of such an approach in solving practical
problems related to API mining and understanding.

7 Conclusion

This exploratory study suggested and experimented a practical solution for effi-
cient and accurate API classification based on state-of-the-art LLM models. The
simplicity of data handling contributes to the approach’s overall effectiveness.
By bypassing the need for extensive data preprocessing, our approach achieved
a remarkable enhancement in efficiency and simplicity in implementing an API
classifier.

Eventually, we would like to stress that our approach pointed us to the inad-
equate or imprecise classification of openly available datasets. On the one hand,
this is a severe threat to all research performed with these datasets; on the other
hand, random sample manual investigation led us to the conclusion that the
classification proposed by our approach could be more adequate and precise. We
thus see a further use case of our approach in revising existing API classifica-
tions and also see a call to action for the community to clean and improve the
available datasets.

Enhancing API Labelling with BERT and GPT 13

References

1. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida,
D., Altenschmidt, J., Altman, S., Anadkat, S., et al.: Gpt-4 technical report. arXiv
preprint arXiv:2303.08774 (2023)

2. Apis.Guru: Apis.guro apis repository. https://github.com/APIs-gurul (2021)
3. Assunção, W.K., Krüger, J., Mendonça, W.D.: Variability management meets mi-

croservices: six challenges of re-engineering microservice-based webshops. In: Pro-
ceedings of the SPLC (A). pp. 22.1–22.6 (2020)

4. Balkus, S.V., Yan, D.: Improving short text classification with augmented data
using gpt-3. Natural Language Engineering pp. 1–30 (2022)

5. Bisong, E., Bisong, E.: Google colaboratory. Building machine learning and deep
learning models on google cloud platform: a comprehensive guide for beginners pp.
59–64 (2019)

6. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877–1901 (2020)

7. Casas, S., Cruz, D., Vidal, G., Constanzo, M.: Uses and applications of the ope-
napi/swagger specification: a systematic mapping of the literature. In: 2021 40th
International Conference of the Chilean Computer Science Society (SCCC). pp. 1–
8. IEEE (2021)

8. Chen, L., Zaharia, M., Zou, J.: How is chatgpt’s behavior changing over time?
arXiv preprint arXiv:2307.09009 (2023)

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

10. González-Mora, C., Barros, C., Garrigós, I., Zubcoff, J., Lloret, E., Mazón, J.N.:
Applying natural language processing techniques to generate open data web apis
documentation. In: Web Engineering: 20th International Conference, ICWE 2020,
Helsinki, Finland, June 9–12, 2020, Proceedings 20. pp. 416–432. Springer (2020)

11. Grootendorst, M.: Keybert: Minimal keyword extraction
with bert. (2020). https://doi.org/10.5281/zenodo.4461265,
https://doi.org/10.5281/zenodo.4461265

12. Harris, C.R., Millman, K.J., Van Der Walt, S.J., Gommers, R., Virtanen, P., Cour-
napeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., et al.: Array programming
with numpy. Nature 585(7825), 357–362 (2020)

13. Hosono, M., Washizaki, H., Fukazawa, Y., Honda, K.: An empirical study on the
reliability of the web api document. In: 2018 25th Asia-Pacific Software Engineering
Conference (APSEC). pp. 715–716. IEEE (2018)

14. HuggingFace: msmarco-distilbert-cos-v5. https://huggingface.co/sentence-
transformers/msmarco-distilbert-cos-v5

15. Initiative, O.: Openapi specification v3.1.0. https://spec.openapis.org/oas/latest.html
(2021)

16. Kalyan, K.S.: A survey of gpt-3 family large language models including chatgpt
and gpt-4. Natural Language Processing Journal p. 100048 (2023)

17. Klein, T., Nabi, M.: Learning to answer by learning to ask: Getting the best of
gpt-2 and bert worlds. arXiv e-prints pp. arXiv–1911 (2019)

18. Korde, V., Mahender, C.N.: Text classification and classifiers: A survey. Interna-
tional Journal of Artificial Intelligence & Applications 3(2), 85 (2012)

14 G. Morais et al.

19. McKinney, W., et al.: pandas: a foundational python library for data analysis and
statistics. Python for high performance and scientific computing 14(9), 1–9 (2011)

20. Mendonça, W.D., Assunção, W.K., Estanislau, L.V., Vergilio, S.R., Garcia, A.:
Towards a microservices-based product line with multi-objective evolutionary al-
gorithms. In: 2020 IEEE Congress on Evolutionary Computation. pp. 1–8 (2020)

21. Meng, M., Steinhardt, S., Schubert, A.: Application programming interface docu-
mentation: What do software developers want? Journal of Technical Writing and
Communication 48(3), 295–330 (2018)

22. Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M.,
Gao, J.: Deep learning–based text classification: A comprehensive review.
ACM Comput. Surv. 54(3) (apr 2021). https://doi.org/10.1145/3439726,
https://doi.org/10.1145/3439726

23. Morais, G., Adda, M., Hadder, H., Bork, D.: x2omsac–an ontology population
framework for the ontology of microservices architecture concepts

24. Morais, G., Lemelin, E., Bork, D., Adda, M.: Companion source code repository.
https://github.com/UQAR-TUW/enhancing-api-labelling-bert-gpt (2024)

25. Norvig, P., Russell, S.: Artificial intelligence: a modern approach. Pearson, Harlow
1, 1239–1269 (2021)

26. OpenAI: Gpt-3.5-turbo. https://platform.openai.com/docs/models/gpt-3-5-turbo
27. OpenAI: Gpt-4-turbo. https://platform.openai.com/docs/models/gpt-4-turbo-

and-gpt-4
28. OpenAI: openapi-python. https://github.com/openai/openai-python
29. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. the Journal of machine Learning research 12, 2825–2830 (2011)

30. Alexandre Peixoto de Queirós, R., Simões, A., Pinto, M.: Code Gen-
eration, Analysis Tools, and Testing for Quality. Advances in Com-
puter and Electrical Engineering (2327-039X), IGI Global (2019),
https://books.google.ca/books?id=Ieh_DwAAQBAJ

31. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving lan-
guage understanding by generative pre-training (2018)

32. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. In: Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Computational Linguistics (11 2019),
http://arxiv.org/abs/1908.10084

33. da Rocha Araujo, L., Rodríguez, G., Vidal, S., Marcos, C., dos Santos, R.P.: Empir-
ical analysis on openapi topic exploration and discovery to support the developer
community. Computing and Informatics 40(6), 1345–1369 (2021)

34. Sanders, R.: The pareto principle: its use and abuse. Journal of Services Marketing
1(2), 37–40 (1987)

35. Serbout, S., Pautasso, C., Zdun, U., Zimmermann, O.: From openapi fragments to
api pattern primitives and design smells. In: 26th European Conference on Pattern
Languages of Programs. pp. 1–35 (2021)

36. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Information processing & management 45(4), 427–437 (2009)

37. Uddin, G., Robillard, M.P.: How api documentation fails. Ieee software 32(4), 68–
75 (2015)

38. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

