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Abstract. Log management and application health monitoring prac-
tices are cumbersome and often still require significant human interven-
tion to prevent inaccurate data and information. Existing technologies
like Elasticsearch and Grafana offer opportunities to automate and im-
prove these practices. This paper reports on a design solution aimed at
enhancing log categorization, anomaly detection, and real-time applica-
tion health reporting for CAPE Groep’s service application. The pro-
posed solution leverages Elasticsearch’s Machine Learning capabilities
and Grafana’s dynamic visualization tools, alongside a newly developed
dashboard named Horus, to centralize log data and automate monitoring
processes. Preliminary results indicate that the proposed solution signif-
icantly improves the accuracy and timeliness of health reports, reduces
manual intervention, and provides comprehensive real-time insights into
application performance. This paper outlines the requirements, architec-
tural design, and phased implementation plan, demonstrating the po-
tential to streamline operations, enhance service delivery, and support
future more stringent scalability requirements.
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1 The Situation

This paper explores the enhancement of log management and real-time applica-
tion health monitoring for CAPE Groep’s service application, leveraging Elas-
ticsearch’s machine learning capabilities, Grafana’s visualization tools and the
development of a custom dashboard, that we called Horus. This section intro-
duces application health monitoring through log management and provides an
overview of CAPE Groep and the CAPE Service Point (CSP) application, de-
tailing the current challenges and proposed solutions to improve log management
and application health reporting.
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1.1 Application Health Monitoring

Application health monitoring is critical in modern software development and
operations, providing essential insights into the behaviour of systems in produc-
tion [5]. Effective monitoring allows for the detection and diagnosis of undesired
behaviours, contributing significantly to system reliability and operational effi-
ciency. Central to this monitoring is log management and analysis, which involves
collecting, processing, and analyzing log data generated by applications and their
runtime environments [5].

Log data records events about the internal state of a system, and plays a piv-
otal role in understanding system behaviour, diagnosing issues, and improving
overall reliability. As highlighted in [5], monitoring complex systems and deriving
actionable insights from log data is a challenging task, requiring sophisticated
tools and techniques. Despite the availability of advanced log management so-
lutions, such as the Elastic stack, challenges remain in effectively leveraging
these technologies to extract meaningful insights. Current log analysis processes
are often time-consuming, error-prone, and lack real-time data insights, under-
scoring the need for fully automated solutions. Furthermore, the importance
of data visualisation for complex data, such as application health metrics, has
been repeatedly highlighted in literature [26]. However, the adoption of Machine
Learning and advanced log analysis methods, and real-time visualisation offer
promising avenues to enhance the efficiency and effectiveness of log manage-
ment practices. By automating the categorization, analysis, and visualisation of
log data, organizations can improve their ability to monitor application health,
detect anomalies, and respond proactively to potential issues.

1.2 CAPE Service Point

CAPE Groep3 is an IT consultancy firm specialized in developing applications
and integrations for organizations in the transport and logistics, supply chain,
smart construction, and agrifood sectors. They leverage low-code technology,
specifically Mendix4 and eMagiz5, to quickly create effective solutions with flex-
ibility for future needs. Next to development and consultant services, CAPE
Groep also offers application monitoring and support services. These services
include, but are not limited to, monitoring the status and health of applications,
providing insights into causes of issues and problems, and managing customer
contact through tickets.

To provide these support services, CAPE Groep has developed the Cape
Service Point (CSP) application that is used by customers in a customer’s specific
environment and by various CAPE employees. Originally the system was created
as a ticketing system for the support department of CAPE Groep, however, it
has evolved into a system that provides multiple functionalities and services.
For the support department to provide the highest quality of services to both
3 https://capegroep.nl/
4 https://www.mendix.com/
5 https://emagiz.com/
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clients and employees, automation and optimization of the many processes within
CSP is essential. Furthermore, automation and optimization provide scalability,
allowing CAPE to work towards taking a more proactive role in predicting and
solving issues before they affect the customers. However, although the system
has many automated components there is room for improvement.

1.3 Log Management & Analytics

In the current setup, CSP collects log files daily using direct API integrations
provided by Mendix. At the same time applications send log entries in real-
time to a database leveraging Elastic’s Elasticsearch, which is an open-source,
highly scalable, and distributed real-time RESTful search and analytics engine
[11]. These logs are transmitted using a custom LogTransporter module publicly
available [13]. Initially, logs were to be centralized in Elastic, however, due to
the perceived inability for categorization, logs are also collected by CSP for this
purpose. Log categorization refers to the process of grouping similar log entries
to prevent data from being cluttered by a single repeating error message. This
results in large volumes of redundant data that not only consume storage space
but also complicate data management processes. Apart from redundancy, cur-
rently Elasticsearch effectively aggregates logs from various applications but is
not extended with functionality to categorize or analyze these logs meaningfully.
The current setup only allows for alerting on the total count of log messages,
which is not a very informative performance indicator [5, 7]. This limitation re-
sults in a significant underutilization of Elasticsearch’s capabilities, particularly
its powerful data processing and analysis tools which could provide insightful
analytics and real-time reporting.

Health Check Reports One of the services provided by CAPE performs reg-
ular health checks of applications and generates reports for customer review.
These health check reports are crucial for maintaining transparency for clients
about the performance and status of their applications. However, the current im-
plementation for generating these health checks is notably inefficient and often
produces undesirable results, requiring manual intervention.

In the current setup, a daily scheduled event within CSP collects all log files
of each managed Mendix application individually using the Deploy API [20].
CSP then compares log entries line by line to combine individual log lines into
categories if they are similar. This is computationally intensive as log files contain
between 4 million and 20 million entries. Therefore, the process only runs during
the night and even rejects log files with a size larger than 15MB to prevent CSP
from crashing due to CPU and memory issues. Given that large log files are often
an indicator of problems [5], potentially excluding this valuable information is
not only undesirable but also partially defeats the purpose of log collection and
categorization.

Furthermore, the reports generated based on these data often provide incom-
plete information on issues that occurred. In this scenario, manual intervention is
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Fig. 1. The log analysis data in a health check report

required by the support staff, who manually download the log files from Mendix,
convert them to categories using a Python script that runs locally on a personal
computer and then generate the health check report based on these data instead
of the CSP database. This process is both time-consuming and error-prone be-
cause a support member has to spot missing data in the automatically generated
health check report, before being aware of the need to import log files manually.
Figure 1 shows example of how log data is presented in the health check report.

Dashboard. Besides the health check reports, the current dashboard available
in CSP provides functionality for monitoring alerts and managing tickets. This
system enables support staff to receive and respond to notifications regarding
various application issues, and to track the status and resolution of tickets. How-
ever, to gain comprehensive insights into application health additional steps are
necessary, as the existing CSP interface lacks an advanced analytical overview
that combines this information with application health metrics, such as log data.
Consequently, staff often need to access multiple systems such as Grafana and
Mendix separately to gain a comprehensive view. In this scenario, Grafana is
used for real-time data visualization and general monitoring dashboards, while
Mendix displays application-specific metrics. Consolidating this information into
a single overview should provide users with a single source of information related
to application health displayed on a dashboard.

1.4 Challenges and Opportunities

The internal consultants at CAPE Groep face challenges in monitoring their IT
landscape effectively because they need to simultaneously view data from multi-
ple sources, which is time-consuming and error-prone. This fragmented approach
hinders efficient workflow and comprehensive system health assessment, requir-
ing a more integrated and streamlined solution within CSP. Furthermore, the
current system lacks accurate real-time data, diminishing the value of the health
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reports, highlighting the need for improved log management and analytics as
well as a comprehensive, real-time dashboard to improve operational efficiency
and decision-making. Additionally, shifting the log collection and analysis to a
separate dedicated system allows CAPE to extend their observability services
beyond Mendix applications, but also potentially support other projects.

The current state of log management and reporting in CSP highlights a signif-
icant gap between the capabilities of the utilized technologies and their applica-
tion within the observability infrastructure. The reliance on manual processes for
critical functions such as application health reporting and the underutilization of
Elasticsearch for data analysis represent key opportunities for improvement. By
leveraging the advanced features of Elasticsearch for log categorization and em-
ploying automated tools for data analysis and reporting, CSP can significantly
improve its operational efficiency, reduce costs, and enhance service delivery to
clients. This project aimed to exploit these areas of improvement.

2 The Task

2.1 Goals

The primary task of the project was to enhance the CSP system and CAPE’s
observability infrastructure by designing and implementing improvements to its
log collection and analytics capabilities, focusing specifically on overcoming the
challenges related to partial matching and grouping of log messages. Further-
more, we also enhanced the presentation and visualisation of the improved data
and insights for both internal consultants and in the future customers through
the development of a new customized dashboard, which we called Horus.

The project was conducted within the constraints of a Master’s student in-
ternship period, totalling 14 weeks. Although budget details were not specifically
outlined at the start of the project, the inherent nature of an internship project
implies limited availability of both time and funding. Furthermore, one of the
goals was to reduce the needed computational resources for log analysis, therefore
the added costs from the solution should not exceed the saved costs.

Furthermore, the initial requirements of the project were:

– The proposed solution had to seamlessly integrate with CSP and the broader
observability infrastructure of CAPE Groep.

– The solution had to be scalable to handle increasing volumes of log data
efficiently. Performance efficiency was essential to ensure that the log analysis
process did not negatively impact the overall system performance.

– CAPE Groep expressed a preference for the solution to be built with tech-
nologies already applied in their IT landscape, therefore reducing the need
for new major investments and training employees.

– The new dashboard should provide a comprehensive overview of the met-
rics and information related to the application’s health status while also
supporting a landscape overview.



6 Eichhorn et al.

2.2 Stakeholders

The key stakeholders related to this project include the Support team lead, the
CSP product owner, and various consultants who utilize CSP. The Support team
lead was the company-assigned supervisor for the project. This role involved par-
ticipation in regularly scheduled progress meetings and feedback sessions, and
overall guidance. The CSP product owner was responsible for overseeing the
development and enhancements of the CSP modules. The product owner was
consistently available to guide the project, approve key decisions, provide sug-
gestions, and ensure alignment with the CSP goals and purpose. Finally, various
consultants were contacted during the project. To provide valuable input for un-
derstanding the broader use cases and integration requirements of the system.
Furthermore, they provided direct feedback on the layout and functions of the
Horus dashboard. The consultants were intermittently available but participated
in focused interviews and feedback sessions.

3 The Approach

The approach applied in this project consisted of a structured process aimed at
addressing the identified challenges and meeting the set objectives. The method-
ology was primarily iterative and incremental, leveraging principles from Ag-
ile development to ensure flexibility and responsiveness to evolving require-
ments and potential solutions. Additionally, a user-centred design philosophy
was adopted, focusing on enhancing the user experience and addressing the spe-
cific pain points identified during stakeholder interviews. This approach facili-
tated continuous improvement through iterative cycles of development, feedback,
and refinement ensuring that the solution remained aligned with user needs and
organizational goals.

3.1 Project Steps

The first step of the project was an analysis and review of the current observ-
ability infrastructure at CAPE as well as the internal workings and architecture
of the CSP system. In this step, we also performed stakeholder interviews to
gather detailed requirements and gain insights into the pain points of the cur-
rent implementations within CSP. We focused on the support team and internal
consultants as they are the main actors who interact with both the CSP system
and the observability infrastructure.

After that, we performed a literature review on both Elasticsearch and other
existing state-of-the-art Machine-Learning techniques for log analysis. Based on
the results of this review, further investigation and research were conducted to
identify the benefits of implementing the Elastic Common Schema (ECS), which
defines a common set of fields to be used when storing event data, such as logs
[9], and capturing the requirements for this.
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The next step was the development of a proof-of-concept to explore the fea-
sibility of using Elasticsearch for log categorization and analysis given the de-
termined requirements. This involved setting up a test environment, configuring
Elasticsearch, and setting up and validating log parsing and categorization func-
tionalities.

After validating the quality and feasibility of the proposed solution, the new
log categorization setup was integrated with CSP, ensuring compatibility and
minimal disruption to ongoing operations. Furthermore, various dashboards were
developed leveraging Grafana’s visualisation capabilities on the newly available
data and insights. Next, feedback was collected from the stakeholders on the
proof-of-concept and initial implementation, identifying areas for improvement.

Due to the large scope and limited time, a decision was made to focus on
showing the feasibility and quality of the solution design rather than fully imple-
menting it and deploying it to the production environment. We also developed a
migration and implementation plan that describes various migration strategies
and their associated benefits and downsides.

Finally, the Horus dashboard was also interactively developed. Design ideas
and decisions were continuously discussed with both the CSP product owner and
consultants to ensure requirements satisfaction and a user layout that provides
a streamlined user experience. After the validation, the first version of this dash-
board has been deployed to the production environment and is currently being
used by the staff, confirming the success of the project.

3.2 Solution Design Requirements

Requirements were gathered from a comprehensive analysis of CSP’s current
challenges, the capabilities of Elasticsearch, and the business processes supported
by the current log collection and aggregation infrastructure. Following the CSP
analysis, and a discussion with the product owner, the main requirements and
objectives of this solution design have been:

– Improved log categorization (RQ1): the proposed solution should improve the
ability to analyse individual log messages and combine them into coherent
categories, ultimately improving the accuracy and relevance of the generated
health check reports. This should support CAPE’s analysis of common issues
and trends across their IT landscape.

– Enhanced anomaly detection (RQ2): building upon the enhanced log anal-
ysis and categorization, the solution should provide improved automated
anomaly detection capabilities, preferably with customised alerting options.

– Insightful dashboarding and reporting (RQ3): by providing dynamic insights
into top recurring log entries and operational anomalies, the dashboard
should enable proactive management and optimization of CAPE’s IT opera-
tions. Furthermore, it should replace the current implementation for health
check report generation.
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3.3 Technical Requirements

Apart from the solution design requirements, the technical foundation of the
proposed solution should also adhere to the following constraints, amongst oth-
ers:

– Scalability and performance: the solution should scale efficiently with CAPE’s
growth and be able to handle the increasing volume and velocity of log data.

– Integration compatibility: is seamless integration with the existing CSP and
CAPE observability infrastructure, requiring minimal changes to the current
operational workflows.

– Data ingestion and processing: the solution should support log data ingestion
from at least Mendix applications. Furthermore, the log ingestion and pro-
cessing is preferred to be a single solution to ensure the overall observability
architecture does not become too complex.

– API integrations: the solution has to offer API endpoints to facilitate inte-
gration with both CSP and the other applications in CAPE’s IT landscape,
allowing for automated retrieval and transmission of logs, alerts, and reports.

– Security: all log-related data should be handled in a both fast and secure
manner, ensuring that all data and information within the solution adhere
to relevant security standards and privacy regulations while minimizing the
performance overhead.

This solution design should set the foundation for a robust observability
framework that leverages advanced data processing and analysis techniques to
enhance operational intelligence and efficiency.

4 The Results

This section presents the findings from our study on enhancing log management
and real-time application health monitoring. The results encompass three key
areas: the insights gathered from our literature review on Machine Learning
techniques for log analysis, the capabilities of Elasticsearch in our context, and
the detailed design of the proposed solution. Together, these findings offer a
robust framework for improving log categorization, anomaly detection, and real-
time health reporting.

4.1 Machine Learning in Log Analysis

In the ever-evolving landscape of computing, the volume and complexity of logs
generated by systems and applications have escalated dramatically due to the
scale of distributed systems [2]. This section delves into various state-of-the-
art methodologies currently found in the literature on log analysis, leveraging
machine learning and advanced computational techniques to extract meaningful
insights from vast datasets of log entries. Furthermore, at the end of the chapter,
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a discussion on whether these methodologies are suitable for the current problem
is presented.

The analysis of logs, especially in large-scale IT infrastructures, has transi-
tioned from simple pattern matching to more complex machine learning models
that predict, classify, and help in the proactive maintenance of systems [2]. The
problem with the Log-based Anomaly Detection (LAD) problem consists of de-
tecting anomalies from execution logs that record both abnormal and normal
system behaviour [2]. In the current literature, there are many different streams
of ideas towards optimizing log anomaly detection such as using Natural Lan-
guage Processing [3, 17, 31], Word2Vec [29, 28, 18] and Deep Learning [31][21][34]

Natural Language Processing (NLP), techniques are increasingly utilized in the
analysis of log data to automate error handling, pattern recognition, and predic-
tive maintenance within complex systems [17, 3]. The integration of NLP with
log analysis leverages the textual nature of log data, applying various linguistic
models to interpret, categorize, and analyze data in a way that mimics human
reading and comprehension [3]. This enables the extraction of valuable informa-
tion from log files as if they were regular text documents. Leveraging modern
NLP techniques to analyze the grammatical structure and context of log events,
features and patterns can be extracted and then processed by standard machine
learning algorithms for anomaly detection [3].

Furthermore, using NLP techniques makes log mining for anomaly detection
more efficient, automated, and scalable overall reducing the need for manual
intervention in log analysis processes. One of these modern NLP techniques is
word embedding, specifically Google’s Word2Vec algorithm [22], this algorithm
can be applied to map words in log files to high-dimensional vector represen-
tations. These representations can then be used as a feature space for training
classifies to detect anomalies in log data [29] [28].

Word2Vec, as stated previously Word2Vec techniques provide powerful tools
for feature extraction from text data, which is instrumental in analyzing and
interpreting large volumes of logs. Developed by Tomas Mikolov and his team
at Google, Word2Vec models capture semantic relationships between words by
learning to predict a word from its neighbours in a sentence, or vice versa [22].
It employs a shallow neural network architecture with one of two model frame-
works: Continuous Bag of Words (CBOW) or Skip-Gram [22]. Both of these
models use a similar approach, however they differ in the direction of the predic-
tion objective. CBOW predicts a word based on its context words and Skip-Gram
predicts context words from a target word [21].

The paper by Wang et al. [29] introduce LogUAD, a Word2Vec-based log
unsupervised anomaly detection method designed to address challenges in an-
alyzing system logs in large-scale distributed systems. The authors discuss the
challenges in analyzing logs in large-scale distributed systems due to log insta-
bility, the increasing volume of logs, computational costs and lack of labelled
data for supervised methods [29]. LogUAD is proposed as a solution to these
challenges, showing promising results when compared to existing methods [29].
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Another example, is that of the Log2Vec framework presented in [21]. This frame-
work extends the traditional Word2Vec model by incorporating domain-specific
semantics that significantly enhances the effectiveness of log analysis [29]. This
is done by embedding the out-of-vocabulary (OOV) 6 words at runtime and ex-
tracting semantic information from the logs, which is crucial for tasks such as
anomaly detection and system monitoring [5].

Although all of these start-of-art methods and machine learning models look
very promising, there is a major downside, most of these are not fully devel-
oped and tested in practice. Most have been tested against commonly used Log
datasets for research and comparisons, however, most of the models have not
been implemented in a real-life scenario. Furthermore, most of the papers dis-
cussed do not provide the model or steps for recreation, therefore the time needed
to fully develop and test a setup leveraging these advanced machine learning con-
cepts will not be feasible in the limited time available for the assignment.

4.2 Elasticsearch capabilities for the project

Elasticsearch is a widely used open-source, highly scalable, and distributed
real-time RESTful search and analytics engine designed for horizontal scalabil-
ity, reliability, and easy management. One of the most common use cases for
Elasticsearch is for logging [30], which is also used for monitoring applications
in real-time and analyzing large datasets on the fly [32]. This is because Elastic-
search leverages the robust, full-text search capabilities of Apache Lucene [4], a
popular search engine Java library, making it an adequate choice for applications
requiring complex search features across large volumes of data. Lucene indexes
a document through inverted index [4], which is a data structure that tracks
which documents contain certain values, allowing efficient document search [11].

Elasticsearch Text Categorisation is a built-in component that uses machine
learning (ML) for categorizing text documents or sentences into predefined cat-
egories. It examines the content and meaning of the text and then assigns the
most suitable label through text labelling. In particular, the Elasticsearch cate-
gorization anomaly detection ML job aims at automatically categorizing similar
text values together [1]. This feature enables the analysis of large volumes of
machine-written text like log messages, being a suitable candidate for our sce-
nario. The model is trained on the incoming log data and learns the normal
values and patterns of a category over time. This allows the detection of anoma-
lous behaviour based on the number of occurrences or based on the rarity of a
message. The categorization job uses an unsupervised ML model, so it does not
require predetermined categories or prelabeled training data. Instead, it auto-
matically identifies patterns and similarities in the provided log data. The main

6 Out-of-vocabulary (OOV) words refer to words that appear in a text but were not
included in the training set vocabulary when a language model or a word embedding
system, like Word2Vec, was initially trained.
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downside of the ML job is that it only returns anomalies. Although it catego-
rizes log messages in a desired manner, it will not return all categories, only the
anomalous ones. This is useful for anomaly detection, however, it is insufficient
given the fact that we also want to provide insight to the end users into, for
example, the top 10 most occurring errors of a specific period.

Categorize Text Search Function is another built-in feature, introduced
in Elasticsearch version 7.16, for text aggregation categorization [6]. This is a
multi-bucket aggregation that groups semi-structured text into distinct cate-
gories based on textual similarity [8]. Similar to the anomaly detection job this
process involves analyzing the text with a tokenizer, which breaks down the text
into tokens. Once the text is analyzed, the tokens are clustered together with a
modified version of the DRAIN algorithm [14]. The DRAIN algorithm is an on-
line log parsing method that can parse logs in a streaming and timely manner. To
accelerate the parsing process, DRAIN builds a token tree and considers earlier
tokens as more important. Elastic has modified the algorithm slightly to allow
for earlier merging of tokens in the provided text when building categories [27].
The difference between this function and the ML job is that this is done once
when the search request is sent to Elasticsearch. Therefore it is not well suited to
use for constant anomaly detection, however, this feature is particularly useful
for creating overviews of top log messages occurring in applications, allowing
system administrators to quickly identify and address frequent or critical issues.

Elastic Common Standard (ECS) is an open-source specification published
and maintained by Elastic [9], which defines a set of common fields to be used
when storing event data in Elasticsearch, such as logs and metrics. Transitioning
current Elastic indices to adhere to ECS can bring significant benefits to the
current log monitoring and analysis setup [5, 33]. However, like any significant
system update, this transition also comes with potential downsides and costs
[33]. Among the main benefits, we highlight that log data and its formats are
one of the most important parts of a system observability or analysis input
setup [5]. However, they often offer many possibilities of different formats, often
custom-defined, which makes interpreting the fields a big challenge. This is a
common challenge associated with using data from multiple heterogeneous data
sources[16], and a common language for all log events can address this problem
[5].

Implications. Although Elasticsearch does not offer one built-in solution that
satisfies all of our requirements, it does offer solutions that can be combined
with each other to realise the desired situation. In order to leverage the full
functionality and benefits of Elasticsearch we further developed the current log-
ging infrastructure to a more mature state by not only addressing the analytical
processes but also the overall data format and structure. In a landscape with
many different applications and systems, the struggle and need for interoper-
ability and scalability is ever-increasing [10]. A standardized logging schema like
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ECS makes it easier to manage and scale the logging infrastructure, enabling
seamless communication among different systems [33]. Establishing and docu-
menting a single vocabulary to describe the various field names of data reduces
the chance for ambiguity and confusion. This also directly improves data anal-
ysis by making analysis and querying data more straightforward [16]. The same
principle applies to alerting, standardizing streamlines the creation of alerting
rules because the structure and meaning of logs are predictable and consistent.
Combined these result in a reduced learning curve, minimized chances of errors,
more accurate alerts, and faster incident response times.

Apart from general standardisation benefits, ECS has a few specific benefits
in comparison to other standards. First of all, ECS is not only a standard for
log formats. Implementing ECS simplifies the analysis of disparate data sources,
supporting a wide range of use cases, including application performance, security,
and other metrics from all types of sources [9]. Defining a common set of fields
and objects to ingest data into Elasticsearch enables cross-source analysis of
diverse data. As a result, cross-source correlations become implicit with every
search, but if necessary you can still filter down to specific data sources.

Secondly, implementing ECS unlocks and unifies all modes of analysis cur-
rently available in the Elastic Stack. This includes search, drill-down and pivot-
ing, data visualization, machine learning-based anomaly detection, and alerting
[23]. Alongside this, it provides the ability to easily adopt analytics content di-
rectly from other parties that use ECS, whether Elastic, a partner, or an open-
source project within the environment without modifications. Furthermore, fully
adopting ECS allows users to search with the power of both structured and un-
structured query parameters [9]. Overall, by implementing ECS we leverage the
full power of both the ever-growing Elastic stack and all other projects built
upon this community-driven standard.

Nevertheless, we also have to be aware that adopting ECS involves certain
downsides, potential pitfalls and costs that are both general to any system’s
migration and ECS. First of all, transitioning to ECS from the current custom
schema can be a resource-intensive process, requiring development effort and
adjustments to existing data pipelines and log transmitting modules. Next to
this, changing the current naming conventions necessitates investment in both
training and documentation updates. Additionally, during the migration pro-
cess, CAPE and its customers might face temporary reductions in logging and
monitoring efficiency, which could (in)directly affect operational capabilities.

Furthermore, as always with the implementation of standards there is the risk
of over-standardization, where the schema might not support all custom use cases
without significant customization, potentially leading to data being fitted into
unsuitable fields or losing granularity in data [10]. ECS allows for customisation,
and while this does offer flexibility it could undermine some of the benefits of
adopting a standardized schema by introducing inconsistencies and complicating
data analysis. Furthermore, relying heavily on ECS’s new releases means that
regular updates to logging practices are required to align with the new versions
of the schema, resulting in ongoing maintenance costs and efforts.
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Finally, there is also a risk for the potential of increased storage costs, as
ECS encourages the inclusion of extensive contextual information alongside each
event, which could lead to larger indices in Elasticsearch. Without proper mon-
itoring and management of these indices to optimize performance and size it
could increase costs. However, given that the number of stored fields for the
current format is 9 fields and compliance with ECS requires 10 fields the risk
should be minimal.

Overall, the choice to fully adopt ECS in the logging setup is not merely
a technical upgrade but also a strategic move towards a more integrated, scal-
able, and efficient observability architecture. Apart from optimizing the current
process, it paves the way for future innovations in the overall monitoring and
analysis capabilities.

Grafana is an open-source platform renowned for its powerful capabilities in
querying, visualizing, alerting, and exploring metrics, logs, and traces, regardless
of where they are stored [12]. It serves as a valuable tool for creating insightful
graphs and visualizations from time-series data, enhancing the observability and
operational intelligence of IT environments. Grafana’s flexible plugin framework
supports integration with various data sources, making it a versatile choice for
data analytics [15].

Next to this, in a log observability infrastructure, Grafana can be seamlessly
integrated with Elasticsearch to enhance monitoring and analysis capabilities.
Elasticsearch efficiently handles the storage and querying of large volumes of
log data, while Grafana provides the user interface to visualize and explore this
data. Together, they offer a comprehensive solution for monitoring applications.
Furthermore, in comparison with Elastic’s visualisation component, Kibana, it
offers more suitable pricing models for CAPE’s needs. Due to these reasons,
CAPE has opted to use Grafana for all its time-based data visualization needs.

4.3 Proposed Architecture of Observability Infrastructure

Figure 2 shows an excerpt of the high-level architectural overview of the ob-
servability infrastructure, showing only the relevant components to ensure read-
ability and understanding. As we agreed before, the direct connection between
Mendix applications and CSP made little sense given the structure of the rest
of the setup. This connection represented the daily collection of log files for ag-
gregation, categorization and finally reporting. Furthermore, the current setup
already focused on leveraging Elastic as a central processing and storage en-
vironment. Therefore it was logical to focus on further centralizing this flow of
data. The changes in the architecture are shown using a red cross for the removal
of the integration and a green plus for the addition of categorised log anomaly
detection.

Reduced Complexity and Resource Requirements. Figure 2 shows that
CSP relied on a direct integration, with nightly API calls to Mendix for log col-
lection, which are inefficient and should be removed as we discussed in section
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1. The new architectural scenario removes the connection between the Mendix
applications and CSP, as indicated in 2, simplifying the overall monitoring in-
frastructure. By centralizing log data, CSP makes multiple direct integrations
unnecessary reducing the complexity of the application. Moreover, with central-
ization computational tasks previously handled within CSP can be removed,
thereby freeing up resources that can be redirected to improve application per-
formance, and user experience, and enable future innovations.

Fig. 2. Changes to the observability infrastructure architectural high-level overview

Centralisation of Log and Metrics Data. The proposed solution also cen-
tralises all log and metrics data in Elasticsearch. This approach offers several
advantages such as simplified data management and improved correlation capa-
bilities. By consolidating all logs and metrics into a single system, CAPE can
manage its observability data more effectively, reducing the complexity and over-
head associated with handling multiple data sources providing performance and
scalability. Furthermore, storing data related to different components of applica-
tions allows for cross-functional and domain analysis by allowing different types
of data from various sources to be correlated and analysed together. This is
particularly useful for gaining comprehensive insights across various operational
domains within CAPE, and has the potential to even be further extended in the
future, for example with security data.

Standardisation to ECS. To fully leverage the benefits of centralizing logs,
metrics, and other data, the data format should be standardised inside the com-
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pany. Adopting ECS will facilitate this by providing a consistent framework for
data formatting across all domains. Leveraging this standardisation, adminis-
trators and users can perform searches, analyses, and correlations across diverse
data sets. Furthermore, standardizing ensures that as new types of data are in-
corporated into the system, which in turn can be easily integrated and analysed
without significant modifications to the existing infrastructure.

Grafana. In addition to changes to Elasticsearch, we integrated advanced vi-
sualization capabilities in Grafana in order to improve even more CAPE’s ob-
servability infrastructure. Grafana has been employed to effectively visualize the
results from the newly implemented log categorization and analysis processes,
facilitating an intuitive and actionable display of data for operational monitoring
and decision-making.

Grafana has been used to display the categorized logs using dynamic visual
components such as bar charts, pie charts, and tables. These visualisations show
the distribution of log categories over time, highlighting the frequency and trends
of various log types, including errors and warnings. This allows system adminis-
trators and support personnel to quickly identify and focus on the most critical
issues that require attention. Figure 3 shows an example of a dashboard that we
created to demonstrate these capabilities.

Fig. 3. A Dashboard leveraging the capabilities offered by the new setup

In addition, Grafana’s real-time monitoring capabilities can now leveraged
to offer up-to-the-minute insights into the application’s health. The dashboards
can be configured to receive live data feeds from Elasticsearch, ensuring that the
displayed information is always up-to-date, which is critical for enabling real-time
monitoring and rapid response to emerging issues. Furthermore, Grafana can now
be set up to send alerts based on user-specified triggers identified through the
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log analysis. For example, if the frequency of a particular error category exceeds
a predefined threshold, Grafana can trigger an alert to notify the relevant teams.
These alerts can be customised to match the severity and nature of the issues,
ensuring appropriate prioritisation and response.

Cape Service Point. In this project, we also modified the CSP Mendix model.
In the new scenario, the workflow is simplified by reducing the dependency on
multiple processes and storage within CSP. Leverage the categorization capa-
bilities of Elasticsearch instead. These changes resulted in the development of a
new microflow that handles the interaction with Elasticsearch and subsequently
retrieves the data for the generation of health checks. This single streamlined mi-
croflow replaces the entire log collection, aggregation, and log storage logic within
CSP. The microflow directly queries Elasticsearch instead of calling the Mendix
API for logs. The response from Elasticsearch includes logs that are already
categorized and ranked based on frequency and severity. These categorised and
ranked logs are used to automatically compile improved health check reports.
These reports are more accurate, timely, and comprehensive than the current
implementation.

4.4 Horus Dashboard

In addition to the improvements to the observability infrastructure, we also
created an overview page to monitor application health as a dashboard, which
we called Horus. This dashboard is made up of two layers of information, namely
basic panels and advanced panels. The general overview displays the basic panels
and provides information related to four aspects of application health. These
panels provide the most high-level information on the status of the application
selected in the dashboard. As shown in Figure 4.

This overview shows the status of all the tickets, alerts and log metrics related
to the two selected applications. For each of these panels, we present the most
high-level information, such as the number of open Priority 1 tickets or critical
alerts. Additionally, for each piece of information, we include a trend that shows
the difference between the currently selected time window (seven days in the
example) and the same window before that. Furthermore, based on these trends
different traffic lights indicate the severity of the trend accordingly with the
colours green, orange, or red. The severity thresholds can be personalised for
each end user, providing users with an easy and clear overview of the current
IT landscape health status. If the user wants to know more details about one of
the panels, they can click on them, and the advanced panels are opened.

Figure 5 shows that these panels include more detailed information on each
category of information. For tickets and alerts, this consists of graphs showing
the distribution of the count presented in the basic overview. Furthermore, a
time series chart shows how tickets and alerts progress over time. Both of these
charts were implemented using the Plotly JavaScript Open Source Graphing
Library [25], which also means that they are interactive, so clicking them opens
overview pages for the selected data point.
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Fig. 4. The basic overview panels of Horus

Fig. 5. The advanced panels for tickets and alerts of Horus
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For example, if a user clicks on a certain alert level of an application, it opens
an overview of those alerts for that specific application in the time window, so
that users do not have to manually look for the tickets or alerts when needed.

Next to this, the user can click on the status & alerts and the logs basic
overview panel to open the two advanced panels shown in Figure 6. This pro-
vides an overview of the status of each component of the selected applications.
Furthermore, the logs advanced panel shows a Grafana embedded panel, imple-
mented with IFrame, which is a log histogram that displays the distribution of
different error severities over time. The screenshots in Figure 6 should give some
insights into the functionality offered by Horus.

Fig. 6. The advanced panels for health status and logs of Horus

4.5 Solution Implementation Plan

The implementation plan for any IT system, particularly business-critical so-
lutions like the one we proposed, involves careful consideration of various de-
ployment strategies to ensure effectiveness and minimize disruption to ongoing
operations. Before deciding on an implementation strategy, we evaluated each
strategy based on specific organizational needs, risk assessments, and the crit-
ical nature of the systems involved. The following are common strategies were
considered for implementing the proposed solution:

– Big Bang Rollout [24, 19]: This strategy consists of a complete and simul-
taneous transition from the old system to the new system across the entire
organisation at a specific point in time. While this can be the fastest method
to implement, it is also the riskiest, as it leaves little room for error and ad-
justment.
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– Phased Rollout [24, 19]: This strategy consists of implementing the new sys-
tem in stages over a specific period. In each phase, the solution is rolled out
to a different segment of the end users. This can be done based on appli-
cation, team, customer or even department. This strategy reduces the risk
because it allows lessons learned in earlier phases to be applied to later ones.

– Parallel Adoption [19]: In this strategy, both the old and new systems run
simultaneously for a significant period of time. This strategy is less risky
because it allows users to transition gradually and ensures that the organ-
isation can revert to the old system if significant issues arise in the new
system. In this strategy, it is critical to ensure backwards compatibility.

– Pilot Implementation [24]: This consists of rolling out the new system to a
small controlled group within the organisation before a full-scale implemen-
tation. This strategy can help uncover potential issues with the new system
while limiting the impact on the broader organization.

For the deployment of our solution, we recommend a combination of the afore-
mentioned strategies. This consists of creating a pilot implementation after which
a phased rollout will begin, the exact segmentation of the phases can be deter-
mined at a later point, however, for this plan the choice is made to do this per
application. Following the phased rollout, a transition period in which a parallel
adoption takes place. During this period, both the old and new ways should run
in parallel, ensuring that business-critical processes are not hindered and end
users experience a smooth transition. Figure 7 shows that the implementation
process iterates between rolling out the solution for new phases and running
parallel. After successfully upgrading all the applications the process transitions
to the last step namely the Full Rollout. In this step, all the transitions are
double-checked to ensure they are set up properly before the old indices and
field names are removed from Elastic.

Fig. 7. A visualisation of the solution implementation plan
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4.6 Achievements

Overall, this project at CAPE has culminated in an enhancement of CSP and
CAPE’s observability infrastructure, through the integration of advanced Elas-
ticsearch functionalities and the use of Grafana and the custom Horus dashboard
for visualisation. The primary objective of the project was to automate or en-
hance one of the processes within CSP. After initial investigation, interviews,
and research the decision was made to focus the assignment on addressing the
inefficiencies in CSP’s existing log management and health check processes. By
leveraging Elasticsearch’s machine learning features for log categorization and
anomaly detection, along with its powerful text categorisation and aggregation
functions, we significantly automated and streamlined CSPs approach to log
analysis. Hereby satisfying RQ1 and RQ2. Furthermore, automated processes
have significantly reduced the time and support required to manage logs and
generate reports. This has not only reduced errors-prone, and the manual labour
previously required, but also increased the accuracy and timeliness of the health
check reports provided to customers, satisfying RQ3.

Improved Health Check Reports. By leveraging Elasticsearch’s categoriza-
tion capabilities, CSP can improve the way health checks are conducted. Cur-
rently, health checks are generated through a resource-intensive process that
combines log entries, which often requires manual intervention. This method is
not only inefficient but also prone to errors, affecting the reliability and valid-
ity of the reports provided to customers. With the proposed solution, logs are
automatically categorized and analyzed using Elasticsearch’s machine learning
capabilities or search categorization functionality, which can detect anomalies
and categorize text in real time. This process not only speeds up data process-
ing but also increases the accuracy of health checks by ensuring that all data is
considered and appropriately categorized. We improved the old and new imple-
mentation and as is shown in Figure 8, multiple types of errors were not identified
and could not be shown in the report. This can be verified by comparing Figure
8 to Figure 1, which displays the results of the old implementation for the same
application. A satisfied consultant pointed out that "In the past, almost all re-
ports were missing data or contained inaccurate information, I can already tell
this is greatly improved". Overall, by eliminating the need for nightly log col-
lection and aggregation within CSP, we significantly reduce the computational
load on its servers. Furthermore, as the logs are processed and categorized at
real-time by Elasticsearch, the health check reports generated are more current
and reflect better the actual system status. The streamlined CSP microflow al-
lows for a more efficient process flow, reducing the steps involved in generating
reports and thereby decreasing the potential for errors and reducing the over-
all CSP complexity. All of this combined results in a more efficient, accurate,
scalable, and reliable observability infrastructure.
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Fig. 8. The log data reported by leveraging the proposed solution

Improved Service Quality. The shift to an automated, Elasticsearch-powered
setup for log analysis and health checks directly translated to improved service
quality for CSP’s customers. Automated categorisation and anomaly detection
provide CSP with the ability to quickly identify and address issues before they
impact service delivery. Furthermore, the enhanced data analysis capabilities
ensure that health reports are both accurate and timely, fostering trust and
reliability among clients. Next to this, the further development of the Horus
dashboard has improved the visualization landscape at CSP, further satisfying
RQ3. Customized dashboards now provide more and improved dynamic and
real-time insights into the application’s health, allowing for rapid response to
emerging issues. This enhancement has not only improved internal operational
efficiency but has also boosted the quality of service CSP provides to its clients,
enhancing customer satisfaction and trust.

More generally, the architectural redesign using Elasticsearch as the backbone
for CAPE observability infrastructure presents a robust solution that reduces
architectural complexity, decreases resource consumption, and significantly im-
proves the reliability and accuracy of operational health checks. This strategic
overhaul not only streamlines internal processes but also enhances the quality of
service delivered to customers. By effectively leveraging modern technologies like
Elasticsearch and Grafana, CSP has not only addressed some of its immediate
operational challenges but also laid a foundation for continuous improvement
and innovation. As CSP continues to grow and evolve, the flexibility and scala-
bility provided by these enhancements are expected to play a crucial role in its
ability to meet future challenges and capitalize on new opportunities.
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5 The Reflection

5.1 Limitations

Given that the project was mainly conducted by a student during an internship
of only 14 weeks, there is a potential for sub-optimal solutions and missed op-
portunities. Many of the technologies and concepts explored during this project
were new for the student, and given the fairly limited time frame concessions
had to be made in terms of time spent researching possible solutions. This could
have resulted in a sub-optimal solution design, however, given the produced
benefits and usage of industry-wide adopted technologies this should be fairly
limited. Furthermore, the initial implementation prioritised functionality over
performance optimization. As a result, some processes can possibly be made
more efficient. Finally, given that the research focused on the practical implica-
tions of the solution, a systematic or methodological evaluation of the benefits is
not preferred. However, the results have been validated with qualitative feedback
from management and consultants involved with the process.

5.2 Future Directions

While the project has achieved substantial improvements, there are several areas
where future work could further enhance CAPE’s and CSP’s capabilities. First
of all, something can be done to integrate non-Mendix applications and other
additional data sources. The current setup is tested for Mendix applications, but
there are many other types of applications within CAPE’s IT portfolio. Expand-
ing the types and sources of data integrated into the Elasticsearch framework
could provide more comprehensive insights across other operational areas. Fur-
thermore, the current setup lays the foundation for enhanced security features
by integrating access logs into Elasticsearch. Integrating advanced security an-
alytics into the observability infrastructure could help in better detecting and
mitigating potential security threats. Next to this, performance benchmarking
and optimization efforts can be made to ensure that the system remains re-
sponsive and scalable as data volumes grow. Finally, there is the opportunity
for advanced predictive analytics. More complex machine learning models could
predict potential system failures before they occur, further enhancing proactive
monitoring.

6 Evidence

The case report was authored through a combination of primary practitioner
involvement, stakeholder interviews, literature review, and practical implemen-
tation. The main author was a practitioner involved in the project as an intern.
One of the co-authors is directly associated with CAPE Groep and provided
firsthand insights and guidance on report writing. Interviews and regular feed-
back sessions with key stakeholders, such as the Support team lead and CSP
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product owner, were conducted to gather requirements and validate findings. A
review of relevant academic literature and technical documentation from Elas-
tic and Grafana informed the project’s methodologies and solutions. Practical
implementation and testing within CAPE Groep’s infrastructure were employed
to ensure the feasibility and effectiveness of the proposed solutions. This com-
prehensive approach, combining direct practitioner input, research, and iterative
development, ensured the accuracy and relevance of the project and its report.

7 Conclusion

To conclude, the project to enhance CSP’s log analysis capabilities was a sig-
nificant step forward to improve the system’s functionality and user experience.
While several challenges were faced and some limitations were identified, the
integration of Elasticsearch’s Machine Learning capabilities and Grafana’s visu-
alization tools, along with the Horus dashboard, streamlined operations, reduced
manual intervention and provided comprehensive real-time insights into appli-
cation health. The improved log categorization supported CAPE’s analysis of
common issues, enhancing the accuracy of health check reports. Enhanced auto-
mated anomaly detection and customisable alerts ensured proactive issue iden-
tification, improving system reliability. The Horus dashboard offered dynamic
insights into recurring log entries and operational anomalies, optimizing IT op-
erations. This strategic overhaul reduced architectural complexity, decreased re-
source consumption, and significantly enhanced operational health checks, ulti-
mately boosting service quality and customer satisfaction. Seamlessly integrat-
ing with CSP and CAPE’s infrastructure, the proposal provides a solid solution
with a foundation for future improvements. By addressing the identified omis-
sions and continuing to refine the solution, CAPE Groep can further enhance
CSP, delivering even greater value to its users and customers.
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