
Spotting the Weasel at Work: Mining
Inappropriate Behavior Patterns in Event Logs‹

Saimir Bala1r0000´0001´7179´1901s, Tim Jacobowitz1, and
Jan Mendling1,2r0000´0002´7260´524Xs

1 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
firstname.lastname@hu-berlin.de

2 Security and Transparency in Processes, Weizenbaum Institute, Berlin, Germany

Abstract. Diverging interests in the workplace may lead to undesirable
employee behavior such as taking undue credit, underperforming, shirking
responsibilities, and undermining colleagues. This kind of conduct, also
referred to as weasel behavior, can have significant negative implications
for both individuals and the organization as a whole. Therefore, its
identification is of crucial importance. Recent work in process science
has defined thirteen weasel behavior patterns and proposed the use
of process mining related techniques to uncover them from the traces
recorded by information systems. However, these definitions have not
yet been tested on any event log. This paper aims at closing this gap by
providing the design specifications and algorithms necessary to extract
weasel behavior from event logs. We evaluate our implementation on
the real-world logs provided by the IEEE Task Force on Process Mining
and report the extent of weasel behavior present in each dataset. Our
results have relevant implications on the application and development of
resource-centered process analysis techniques and contribute to better
understanding the information present in the widely-used BPI logs.

Keywords: event log · resource analysis · process mining · behavioral
process mining

1 Introduction

When stress and conflicts of interest arise in workplace situations, individuals may
exhibit inappropriate behavior. This conduct, often labeled as weasel behavior,
includes activities that are unsanctioned and unrelated to work during work hours.
Addressing weasel behavior is crucial for maintaining a productive and healthy
workplace, ensuring legal compliance, and protecting employee well-being.

Traditionally, detecting this behavior has been challenging due to individuals’
tendencies to conceal it. However, the advent of information systems that support
‹ The research of Jan Mendling was supported by the Einstein Foundation Berlin

under grant EPP-2019-524, by the German Federal Ministry of Education and
Research under grant 16DII133, and by Deutsche Forschungsgemeinschaft under
grants 496119880 (VisualMine) and 531115272 (ProImpact).



2 Bala et al.

work activities now allows for the recording of traces of these actions, providing an
opportunity to identify undesired patterns. Recent studies [10] have theoretically
defined various patterns of weasel behavior, using a Principal-Agent [12] frame-
work to analyze resource interactions in event logs. Thirteen specific patterns
have been identified, but these have not yet been implemented as algorithms or
tested in real-world event logs.

This paper aims to bridge this gap by providing a specification for these behav-
ior patterns, developing corresponding algorithms, and evaluating them against
both synthetic and real-world event logs. The results reveal the distribution of
these behaviors in well-known event logs, thereby enhancing our understanding of
resource behavior in organizational settings and contributing to the development
of resource-centered process analysis techniques.

This paper is structured as follows.Section 2 describes the setting of this
work. Section 3 outlines the research methodology devised to translate the weasel-
behavior patterns into design patterns for implementation purposes. Section 4
provides the specifications for each design pattern. Section 5 outlines the results of
our algorithms on both synthetic and real-world event logs, including a discussion.
Section 6 concludes the paper.

2 Literature Review

The scope of this paper is to explore the use of event logs for extracting and
analyzing the behavior of resources. Therefore, we consider the literature that
takes into account both the resource perspective and the analysis of event logs,
at the same time. This section describes previous work, discusses works related
to the analysis of behavioral issues and identifies the research gap to address.
Previous work. This paper follows the research stream started by Leyer et
al. [10]. They use Principal-Agent Theory [12] to explain the relationship between
resources in an organization. This theory states that there is an imbalance in
power held by the principal and in information held by the agent, and their goals.
Given that principals cannot fully control the actions of agents, the latter will
show opportunistic behavior in to attain their individual goals. The propensity
of employees to engage in unsanctioned, non-work related activities during work
time has also been referred to as weasel behavior. Thanks to the adoption of
information systems and the recording of work-related events into system logs,
this behaviour can now be uncovered. Leyer et al. [10] have conceptualized this
inappropriate behavior into the thirteen patterns provided in Table 1.
Related work. Apart the work of Leyer et al. [10], other related work exists
that allows to evaluate resources’ behavior. Specifically, in the process mining
area, social network analysis has been used to examine the interactions and
relationships between the resources of a process. Specifically, the work of [2]
uses event logs to discover social networks within organizations. Song and van
der Aalst [14] developed techniques to automatically extract social networks
from event logs of workflow management systems. Moreover, to overcome the
complexity of networks discovered in large event logs, Ferreira and Alves [7] focus



Spotting the Weasel at Work 3

Table 1: The thirteen patterns of inappropriate behavior as defined by [10]

Rerouting-related Performance-related Social-related

1. Activity Deviation 5. Performance Masking 9. Idling
2. Originator Deviation 6. Performance Blow-out 10. Social Loafing
3. Re-Ordering 7. Overwork Hiding 11. Peer Mobbing
4. Preferential Work Selection 8. Gold Plating 12. Boss Mobbing

13. Social Borrowing

on discovering communities at varying levels of abstraction. More recent work by
Mustroph et al. [13] also considers additional information such as natural language
description of the process to identify whether the mined work is deviating from
the wanted behavior. Further approaches that inform on resources behavior are
the use of standard process mining techniques [1], where the resource information
is used as a case identifier. Techniques like the dotted chart [15] are able to
pinpoint single events that may point to unwanted behavior.

Moreover, process performance indicators [6] and cycle time analysis [9] can
help at pointing out anomalies in resources performance. To aid this kind of
analysis, simulation [11,3] is a powerful technique that can be used for identifying
improper behavior of resources.
Gap. Among the above mentioned approaches, the only work that adopts a
theoretical lens to analyze the resource behavior is [10]. While conceptualized
and exposed in a structured manner, the thirteen proposed patterns have not
yet been implemented. Therefore, we pose the research question how can we
implement such patterns and to what extent can be mined from event logs?. This
paper aims at closing this gap by providing a specification that can be easily
implemented as a prototype, an initial implementation and an application on
real-world event logs that are commonly used in business process research.

3 Methodology

Next, we present our research approach to achieve the design patterns specifica-
tions. We describe the steps undertaken, the data and the framework used to
specify the design patterns.

Research Approach. We summarize the steps of our approach in Figure 1. To start,
we consider the behavior patterns conceptualized in [10] as listed in Table 1. Then,
we proceed in five steps i) analyze pattern description; ii) derive requirements for
identification; iii) derive event log requirements; iv) formulate design patterns
specification; and v) implement and test a pattern detection algorithm.

Let us describe each step in more detail. In step i) we analayze the original
description of each pattern guided by the question what are the inputs required
to apply this pattern?. As a result, we can first classify the patterns whether they
can directly be implemented with only the event log or whether they require
more contextual information such as a process model. In step ii) we consider



4 Bala et al.

Analyze original
pattern description

Derive
requirements for

identification

Derive event log
requirements

For each
pattern

Formulate design
pattern

specification

Implement & Test
pattern detection

Approach
Started

Approach
Ended

Fig. 1: Steps of the approach to specify and implement the patterns.

again each pattern and the information from step i) and we identify specific
requirements of the input. For example, in order to detect performance blow-out
the requirement is that the event log contains the attributes Activity, Start
and Complete Timestamps, and Resource. In step iii) we consider the overall
knowledge gathered by analyzing each pattern to derive general requirements
about the input. This step is guided by the question can we create one single
input with all the required attributes?. The result of this step is also related to the
choice of what specification language used in the next step. In step iv) we use
a patterns specification language to describe each pattern in a way that it can
be easily implemented. In the final step v) we implement and test each pattern,
according the specification. More specifically, before implementing and testing
algorithms in the real data, this step creates synthetic event logs that present
the required behavior (by construction). These synthetic event logs are then used
to test the correctness of the algorithm in identifying the implemented behavior.
The output of this step is further used to analyze the presence of the patterns.

Data, Design Patterns Selection and Specification Format. Next, we describe the
kind of data used in this research approach, what design patterns we used for
the specification of weasel behavior and their format.
Data. The first three steps of the reseach approach allow us to grasp an overall
understanding of the data requirements for weasel behavior detection. In particu-
lar, our approach makes use of two kinds of data: synthetic event logs and real-life
event log. Sythetic event logs are generated ad-hoc for each pattern. More specif-
ically, we first create scenarios for each instance of inappropriate behavior. Then
we manually create event log traces that directly reflect the scenario, for each
pattern. In other words, in the end of our approach, we have 13 synthetic event
logs (one per pattern), each affected by the respective inaproppriate behavior.
Design patterns selection. Before applying step iv), there is a need for selecting
how to transform the conceptualized patterns into a design that can be used for
software specification. As the final goal is to implement and test the behavioral
patterns in practice, we follow the principles of Design Patterns proposed by
Gamma et al. [8]. The main advantange of specifying the thirteen inappropriate
behavior types as design patterns is that they can be used to both generally
describe the problem in context and as requirements for algorithm development.
Specification format. We keep the original classification of the patterns, but
we use a design pattern specification format. Each pattern is described according
to the following template, inspired by [8] and adapted to our case. Pattern Name
conveys the essence of the design pattern, Intent gives information on the intent
or purpose, Problem states the specific problem the pattern addresses, Solution



Spotting the Weasel at Work 5

gives a details on the solution provided by the pattern, Required Attributes
lists the attributes required in the event log, Required Analysis lists the minu-
mum level of analysis an implementation must provide, Implementation ex-
plains what are the steps and considerations for implementing the pattern, Code
Examples provide code snippets or pseudocode to illustrate the implementation,
Sample Applications descibe real-world examples or scenarios where the pat-
tern can be applied, and Consequences outlines benefits and potential drawbacks
of using the pattern.

4 Design Patterns Specifications

In the following, we provide the specifications for each inappopriate behavior,
using the design patterns specification format. For the sake of space, we do not
report the implementation, code examples, sample applications and consequences.
The implementation and code can be found in [4] wheras applications to real-
world event logs and consequences follows in the paper.

Pattern 1. Activity Deviation (Rerouting-related)
Intent: This design pattern captures all those activities that are unexpected or
undesired by the principal (e.g., the owner of the organization).
Problem: The specific problem addressed by this pattern is the conformance of
activities to a desired process known by the principal. Specifically, the process
model represents the desired work.
Solution: The solution provided by this pattern is to perform conformance
checking of the activities present in the event log against the given process model.
The priority is given to the process model. That is, if an activity is only present
in the log, it is considered a deviation.
Required Attributes: Activity, Process Model, or a similar data structure
containing all expected activities
Required Analysis: The activity has to be checked for each event in the log.
The regarded activity then has to be compared with the expected activities
specified in the model
Implementation: Loop through all activities in the event log. Each considered
activity from the event log, should be the next expected activity in the model. If
this is not the case, record the deviation. Collect all the deviations for all activities.

Pattern 2. Originator Deviation (Rerouting-related)
Intent: The purpose of this pattern is to detect those resources who worked on
tasks they were not assigned to.
Problem: While it may be desirable that certain resources undertake tasks they
were not assigned to, the focus of this pattern is on those cases when certain
resources favour doing other tasks instead of their own, as this may give them
more credit.
Solution: The solution provided by this pattern is to perform conformance
checking. Especially, the check should be whether the resources who were assigned



6 Bala et al.

certain tasks were also the ones who conducted them.
Required Attributes: Activity, Resource, Process Model (or a similar data
structure containing the assigned resource for each activity)
Required Analysis: Check each activity in the event log to see if it was con-
ducted by the assigned resource. Record any deviations where tasks were com-
pleted by non-assigned resources.
Implementation: To detect the pattern of Originator Deviation, the assigned
resource has to be checked for each event in the log. The resource associated with
the regarded event should then be compared to the resource who is expected
for the corresponding activity according to the model. If the assignments from
log and process model deviate, it is an indicator of the presence of Originator
Deviation. Otherwise, it has to be proceeded to the next assignment.

Pattern 3. Re-ordering (Rerouting-related)
Intent: The purpose of this pattern is to detect those activties that were per-
formed in an undesired order.
Problem: The responsible agent may think that the activities would be better
performed in a different order than what is prescribed in the process model.
Solution: The solution provided by this pattern is to perform conformance
checking. Especially, this pattern should provide discrepancies in terms of se-
quences of activities performed in the event log versus the model.
Required Attributes: Case, Activity, Timestamps, Process Model (Or a simi-
lar data structure containing the expected order of activities)
Required Analysis: The sequences of activities in the event log, sorted by
timestamp must be compared to the expected sequences of activities prescribed
in the process model.
Implementation: To detect the pattern of re-ordering, it is necessary to check
the order in which activities occurred for each case by examining the timestamps.
This order then has to be compared to the order prescribed in the process model.
If the order of activities in the regarded case from the log is invalid according to
the process model, this is an indicator of the presence of Re-Ordering. Otherwise,
it has to be proceeded to the next case.

Pattern 4. Preferential Work Selection (Rerouting-related)
Intent: The purpose of this pattern is to detect those resources who choose
working on certain tasks disproportionally often.
Problem: Agents may chose easier tasks that have a higher pay-off.
Solution: The solution must single out all those cases in which work was not
performed as assigned (i.e., not in a first-come-first-served (FCFS) fashion).
Required Attributes: Case, Activity, (Start and Complete) Timestamps, Re-
source
Required Analysis: Output a list of activities that are chosen on average more
often than expected by the resources
Implementation: To detect Preferential Work Selection, the frequency of cer-
tain activities being chosen by certain resources has to be observed. Average



Spotting the Weasel at Work 7

frequencies have to be calculated for each activity on this basis. If the frequency
of a resource choosing an activity is significantly greater than the average value
for the regarded activity, this is an indicator of the presence of Preferential Work
Selection. Otherwise, it has to be proceeded to the next frequency of a resource
choosing an activity. Furthermore, it also has to be observed if a resource starts
a new activity in a case while still not being finished with work in another case
by checking timestamps. If a timestamp reveals that this did indeed happen, this
is another indicator of the presence of Preferential Work Selection. Otherwise, it
has to be proceeded to the next timestamps.

Pattern 5. Performance Masking (Performance-related)
Intent: The purpose of this pattern is to point out agents who try to prevent
their performance from being measurable.
Problem: An agent could transfer the content of an online work item to finish it
offline because the time needed is only measured when the work item is opened
online. This way, the actual time needed for the completion of the task can not
be measured.
Solution: The solution should provide information on how quickly the tasks are
performed. Unusually short durations should be collected for further analysis
Required Attributes: Case, Activity, (Start and Complete) Timestamps, Re-
source
Required Analysis: Output a list of cases with many events registered in a
short time
Implementation: To detect the pattern of Performance Masking, cases that
have many events registered in a relatively short amount of time have to be
observed by counting events in cases and checking timestamps. Activities that
occur significantly often in such cases and also have a significantly short duration
should then be searched. If the presence of such cases and activities is confirmed,
it is an indicator of the presence of Performance Masking. Otherwise, it has to
be proceeded to the next cases with many events in a short time.

Pattern 6. Performance Blow-Out (Performance-related)
Intent: The purpose of this pattern is detect agents stretching their work time
by pretending they are still working on an activity when they are actually not.
Problem: Activities might have working times determined by service-level-
agreements, which makes it possible to maximize the time spent on that activity
even when the work is already completed. This suggests that the agent might
want to gain additional free time.
Solution: The solution should provide information on agents who, compared to
others, take longer time on performing similar tasks.
Required Attributes: Case, Activity, (Start and Complete) Timestamps, Re-
source
Required Analysis: Output all those resources that took different times in
peforming similar tasks, along with the tasks performed.
Implementation: To detect the pattern of Performance Blow-Out, the time



8 Bala et al.

different resources need for the same activities has to be inspected by checking
timestamps. Those completion times of different resources must then be com-
pared to determine whether they deviate significantly from one another or are
approximately in the same range. If the standard deviation of the completion
times for an activity is significantly great, this is an indicator of the presence of
Performance Blow-Out. Otherwise, it has to be proceeded to the next completion
times of an activity. Moreover, the completion times of the same resource for
the same activity have to be analyzed. If this duration gets significantly longer
over time, this is another indicator of the presence of Performance Blow-Out.
Otherwise, it has to be proceeded to the next completion times.

Pattern 7. Overwork Hiding (Performance-related)
Intent: The purpose of this pattern is to signal agents performing work outside
of their official working times.
Problem: Agents are not able to finish their allocated work in the expected time.
Since the expected times would usually be set based on the stated skills and
experience of an employee, Overwork Hiding might even infer that an agent is
less skilled or experienced than stated expected by the principal.
Solution: The solution should provide information on agents that perform
actions on work items outside of working hours
Required Attributes: Activity, Timestamps, Resource, Official working times
Required Analysis: Output all the agents that performed work on activities
outside working hours
Implementation: To detect the pattern of Overwork Hiding, the timestamps
have to be investigated for each resource and compared with the working times
of the regarded resource. If a timestamp is found that is placed outside of the
allocated working times, this is an indicator of the presence of Overwork Hiding.
Otherwise, it has to be proceeded to the next timestamp.

Pattern 8. Gold Plating(Performance-related)
Intent: The purpose of this pattern is to show circumstances of overwork in
which resources wether conduct more work than necessary or perfrom additional
services and tasks
Problem: By conducting more work or providing additional services, agents may
increase the favour of certain clients or aim for additional peformance bonus
Solution: Cases with additional duration or cost must be analyzed. Such cases
would take longer in certain contexts (e.g., when associated to a specific client)
Required Attributes: Activity, Timestamps, Resource, Official working times
Required Analysis: Perform variant analysis and point out cases that last
significantly longer from others in the same variant group.
Implementation: To detect the pattern of Gold Plating, cases categorized by
their specific sequence of activities, also called process variants, have to be identi-
fied. Next, the average activity duration of each process variant has to be observed.
If the average activity duration of a certain process variant is significantly longer
than the overall average, this is an indicator of the presence of Gold Plating.



Spotting the Weasel at Work 9

Otherwise, it has to be proceeded to the next process variant. Furthermore, it
has to be searched for process variants containing significantly rare activities. If
a process variant contains an activity that is significantly rare, this is another
indicator of the presence of Gold Plating. Otherwise, it has to be proceeded to
the next process variant.

Pattern 9. Idling (Social-related)
Intent: The purpose of this pattern is to point out agents engaging in non-work
related activities during work time instead of working
Problem: Agents may perceive work as boring or unfair and use working time
for other activities, such as socializing, procrastinating, smoking, etc. Yet, they
do not want to be perceived as bad performers.
Solution: A solution to this problem would be to assign more stimulating work
to resources. Resources that take substantially more time on completing tasks
can be extracted from event logs.
Required Attributes: Activity, (Start and Complete) Timestamps, Resource
Required Analysis: Analyze the actions performed by resources on tasks. Check
completion times.
Implementation: To detect the pattern of Idling, the timestamps have to be
checked to calculate the completion times of each resource for each activity. Based
on those completion times, the mean has to be calculated for each activity to
be compared with the individual completion times. If there is a completion time
value that is significantly greater than the values for other resources conducting
the same activity or significantly greater than the values for the same resource
conducting other activities, this is an indicator of the presence of Idling. Oth-
erwise, it has to be proceeded to the next completion times. In addition, the
timestamps have also be evaluated to detect resources taking possible breaks be-
tween two activities. If those breaks are significantly long, this is another indicator
of the presence of Idling. Otherwise, it has to be proceeded to the next timestamp.

Pattern 10. Social Loafing (Social-related)
Intent: The purpose of this pattern is to detect when, in the context of group
work, an agent avoids, neglects works or free-rides
Problem: As group members do not perform team work by shirking work, the
whole team productivity is affected
Solution: Identify resources that exhibit this pattern and assign them to differ-
ent groups.
Required Attributes: Activity, (Start and Complete) Timestamps, Resource,
Classifications of events into group work and individual work
Required Analysis: Measure the average completion times of resources in the
context of group work
Implementation: The completion times must be measure for each resource in
the context of groupwork. This performance must then be compared to the
completion times of the same resources working alone. If a resource shows a
significantly better individual performance while working alone in comparison



10 Bala et al.

to working in a group, this is an indicator of the presence of Social Loafing.
Otherwise, it has to be proceeded to the next resource.

Pattern 11. Peer Mobbing (Social-related)
Intent: The purpose of this pattern is to detect agents or groups of agents who
degrade their peers by taking over their work without consent.
Problem: Agents steal work items from the entitled resource in order to increase
their pay-off, at the same time making the performance of their colleagues look
poor.
Solution: Resource who exhibit this pattern must be detected and a limit on
the items they can take over should be in place.
Required Attributes: Activity, Resource
Required Analysis: Collect work type that are performed unusually often by
certain groups.
Implementation: To detect the pattern of Peer Mobbing, it is necessary to
analyze the frequency of each activity being performed by each resource. If signif-
icantly many resources perform a certain activity significantly more often than a
single resource, this is an indicator of the presence of Peer Mobbing. Otherwise,
it has to be proceeded to the next resources.

Pattern 12. Boss Mobbing (Social-related)
Intent: The purpose of this pattern is to detect agents or groups of agents who
repeatedly perform poorly as a team in order to make their boss look bad.
Problem: The boss may be too demanding or controlling and a group of agents
decides to underpeform so that companies goals are not met.
Solution: Once these team member are detected, a solution is to assign people
to different teams.
Required Attributes: Activity, (Start and Complete) Timestamps, Resource,
Timestamp when a certain is assigned, Classifications of events into group work
and individual work
Required Analysis: Collect resource peformance before and after the time a
boss was assigned.
Implementation: To detect this pattern, the average completion times of re-
sources performing in group work, before and after a predefined time, starting
when a new boss took over, are analyzed separately. If we observe that resource
groups take significantly longer on average after the boss takeover than before,
we count this as Boss Mobbing.

Pattern 13. Social borrowing (Social-related)
Intent: The purpose of this pattern is to detect agents exploting other agents
by letting them do their work without giving undue credit.
Problem: Agents may not be able to perform their work, they may be over-
laoded or may simply want to increase their performance by offloading work to
colleagues.
Solution: Agents that exploit other agents must be detected and it should be



Spotting the Weasel at Work 11

made sure that they do not work on similar tasks or similar times
Required Attributes: Activity, (Start and Complete) Timestamps, Resource,
Official working times
Required Analysis: Find correlations in peformance. Especially, when one re-
source is present, the performance of another resource is negatively affected.
Implementation: To detect this pattern, the average completion times of each
resource are calculated, for when each other resource is present at work, and
when the same resource is not present. These average times are investigated to
check if there is a correlation between the presence at work of a resource and the
average completion times of another resource. If a resource performs significantly
worse when another resource is present versus when this is absent, that is a hit.

5 Evaluation and Analysis

This section evaluates the feasibility of the design patterns and applies the
resulting algorithm to real-world logs, further analyzing and discussing the
results.

Evaluation Criteria. We evaluate the applicability of the proposed design patterns
by implementing them into a prototype. More specifically we implement each
of the thirteen patterns in a dedicated Python script. The scripts are available
in the GitHub repository linked in [4]. Our key criterion for evaluation is the
effectiveness in translating the design patterns to outcomes. To evaluate this, we
proceed in two steps. First, we construct synthetic input in which we represent
each weasel behavior, for all the thirteen patterns. We then run our prototype on
this synthetic data and improve the implementation until we are able to capture
all the behavior. Second, we apply our prototypical implementation on real-world
event data made available from the IEEE task force on process mining3.

The most suitable logs for our analysis were the BPI Challenge 2012 log
(BPIC12), BPI Challenge 2017 (BPIC17), both representing a loan application
process of a Dutch financial institute, Conformance Checking Challenge 2019
log (CCC19) which represents a medical training process, specifically medical
students learning how to install a specific catheter, and the Dutch academic
hospital (Hospital) log (only used when a timestamp is not required).

Some patterns require not only an event log, but also a model as an input. In
these cases, we create a surrogate by sampling the event log. We make various
samples and use them as a reference model. This means that we also repeat the
application of the algorithms for each sample and collect the average score.

Analysis of the Results. Next, we analyze the discovered weasel behavior in the
real-world event logs. We report the results for each pattern on the event logs
where the pattern could be applied. For the sake of space we will only use plots

3 https://www.tf-pm.org/resources/xes-standard/about-xes/event-logs

https://www.tf-pm.org/resources/xes-standard/about-xes/event-logs


12 Bala et al.

where it is necessary to show comparison. We supply each result with a dedicated
analysis, highlighting key information and limitations.
Pattern 1: Activity deviation. The script implementing the Activity deviation
pattern (from exptected work) could be applied to BPIC12 (262200 events),
BPIC17 (1202267 events), CCC19 (1394 events) and Hospital (150291 events).
No activity deviation could be detected in the former three. In the Hospital log,
282 events were flagged as activity deviation, equals to 0.0019%. Analysis: A
reason for the low occurence of the activity deviation (as implemented) can be
associated to the non-availabilty of a process model. The sampling technique
used 50% of the event log to build a model. Such sample may be too large, and
include all the activities that are also present in the log. In this sense, every
activity of the log is "expected" in the model.
Pattern 2: Originator deviation. Originator deviation (i.e., resources who
worked on tasks not initially assigned to them) could be applied to BPIC12,
BPIC17, CCC19 and Hospital. In this case, while the Hospital log, only showed 1
case of this pattern, CCC19, BPIC17, and BPIC12 presented the highest presence
of the pattern, with 13.79, 12.85 and 6.56% of this behavior out of the total
possible. The total possible behavior was calculated considering the product of all
orginators multiplied by all the possible activities. Analysis: As in the previous
case, given the non-availability of a process model, a sampling technique was
used. Because the algorithm samples the log more than once to use the sample as
a reference model, it is possible that more instances which present this pattern
are detected. This may affect positively the number of hit couples, in case the
sampled event log contains too many similar traces to the original.
Pattern 3: Reordering. Re-ordering (i.e., activities performed in an unexpected
order) could be applied to BPIC12, BPIC17, CCC19 and Hospital. As the
percentage of re-ordering cases is higher than the previous patterns, we display
them in Figure 2. In BPIC12 log, 1213 out of 13087 cases in total are detected
(9.27%). In BPIC17 12890 out of the total 31509 (40.91%) and Hospital log 703
out of 1143 total (61.5%) were detected. Finally, in the CCC19 log all the 20
cases got detected (100%). Analysis: As in the previous cases, the detection
present potentially false positives. This can also be noted by the 100% value
score on the CCC19 event log. However, given the non-availability of a reference
process model, this is not possible to measure.

50 100

BPIC12

BPIC17

CCC19

Hospital

9.27

40.91

100

61.5

Percentage of Re-Ordering
Fig. 2: Re-Ordering percentage in dif-
ferent logs

0 10 20 30

BPIC12(1)
BPIC17(1)
CCC19(1)

Hospital(1)
BPIC12(2)
BPIC17(2)
CCC19(2)

11.8
15.43

1.72
0.73

5.72
35.51

0

Percent of Preferential Work
Fig. 3: Preferential Work Selection per-
centage in different logs



Spotting the Weasel at Work 13

Pattern 4: Preferential work selection. This pattern occurs when i) certain
activities are chosen more frequently than others by certain resources or ii) when
resources start new activities while still working on other ones. We applied both
conditions separately to the to BPIC12, BPIC17, CCC19 and Hospital. Condition
ii) could not be applied to Hospital as the start timestamp is not available (thus,
it is not possible to understand if resources are working in any other task). We
report the results in Figure 3. The number in parethesis expresses which condition
was measures. That is, BPIC12(1) means that condition i) was measured. We
noticed here that the BPI challenges event logs present the higher occurrence
of this pattern. Analysis: The values observed in the logs may present false
positives or negatives, as the classification of normal frequency depends on a
threshold value. Domain experts are required to set this value optimally.
Pattern 5: Performance masking. Given the requirement on start timestamp,
this pattern could not be applied to the Hospital log. In other logs it was detected
as follows. BPIC12 is affected as 16583 events over 262200 total (6.32%), BPIC17
as 47608 events out of 1202267 (3.96%), and CCC19 as 37 events over 1394
(2.65%). Analysis: The percentages are threshold based. A domain-expert can
help setting them more optimal results.
Pattern 6: Performance Blow-Out. We report the results in Figure 4. The
numbers in parentheses denote which condition of Performance Blow-Out the
corresponding bar represents: 1 for the first condition (different resources, same
activities) and 2 for the second condition (same resources, same activities). Anal-
ysis: No instances of Performance Blow-Out are detected in the CCC19 log. In
contrast, the remaining two logs exhibit significant proportions of Performance
Blow-Out. The proportion is particularly pronounced in BPIC17, with approx-
imately twice the percentage of signelled instances versus BPIC12, for both
conditions of the pattern. These findings reveal that resources perform certain
activities slower over time in the two logs.
Pattern 7: Overwork hiding. This algorithm was applied to BPIC12, BPIC17,
CCC19, and Hospital. The detection was as follows 80250 detected events over
262200 for BPIC12 (30.61%), 298728 events over 1202267 total for BPIC17
(24.85%), 1394 over 1394 for CCC19 (100%), and 150291 over 150291 for Hospital
(100%). Analysis: There are two primary factors that could contribute to false
positives and negatives. Firstly, the code assigns default working times of 09:00
to 17:00 to all resources in the four logs due to the absence of predefined working
times. This can lead to events registered within the true working hours being
falsely detected as Overwork Hiding. However, this issue could also result in
false negatives, where events occurring within the default working hours are
not flagged despite being outside of the actual working hours for the respective
resource. Timezones recorded in the timestamps are a further source of threat.
Pattern 8: Goldplating. We report the decetion results of this pattern in
Figure 5. The numbers in parentheses denote which condition of Gold Plating the
corresponding bar represents. Conditions are variants with a significantly i) longer
duration and ii) rare activities. The highest percentage of hits for both conditions
was observed in the BPIC12 log. Specifically, out of 4371 process variants in the



14 Bala et al.

BPIC12 log, 927 were found to take significantly longer to complete than others,
and 2742 were found to contain a significantly rare activity. In the BPIC17 log,
although fewer, still significant proportions of positives were identified, with 2699
and 6447 out of 15930 total process variants. Similarly, in the CCC19 log 1 and
10 out of 20 process variants were detected. Analysis: These patterns we always
possible to detect in the real-world event logs. The significance threshold was set
to 1%. Yet, it was still possible to detect this pattern.

0 20 40 60

BPIC12(1)

BPIC17(1)

CCC19(1)

BPIC12(2)

BPIC17(2)

CCC19(2)

17.19

32.09

0

30.56

61.54

0

Percentage of Performance Blow-Out
Fig. 4: Performance Blow-Out

0 20 40 60

BPIC12(1)

BPIC12(2)

BPIC17(1)

BPIC17(2)

CCC19(1)

CCC19(2)

21.21

16.94

5

62.73

40.47

50

Percentage of Gold Plating
Fig. 5: Gold Plating percentage

Pattern 9: Idling. Durations are analyzed for this pattern, so the Hospital
log is not considered. Three conditions are calculated: i) count of instances
where a resource requires significantly more time for an activity compared to the
average resource, ii) resources that require significantly more time for a particular
activity compared to their average time for other activities and iii) instances
where resources take significantly long breaks without registering any activity.
The results are as follows. BPIC12 (i, ii, iii) = (186, 224, 783), BPIC17 (i, ii, iii)
= (455, 579, 397), and CCC19 (i, ii, iii) = (0, 0, 0). Analysis: No instances of
Idling were detected in the CCC19 log for any of the three conditions. The most
significant tendency was found in the BPIC12 log, where approximately 31.52%
of possible resource/activity combinations were flagged as resources taking long
breaks. The proportions of the remaining two conditions in the same log, as well
as all three conditions in the BPIC17 log, are between 7% and 15%.
Pattern 10: Social loafing. This pattern was applied to CCC19, BPIC12, and
BPIC2017. No social loafing pattern was detected in the CCC19 log. On the
contrary, 42 out of 69 resources in the BPIC12 log and 105 out of 149 resources in
the BPIC17 log exhibited such behavior. Analysis: Considerable difference was
found between BPIC12 and BPIC17 event logs. Respectively, they are affected as
much as 68.87% and 70.47%. Possible false positives may be attributed in part to
the threshold, as its value determines the extent to which the average completion
time of a resource must deviate between group and individual work. It is set to 10
minutes. Furthermore, the group work detection function also presents potential
for false positives and negatives. This function checks for four conditions, which
may not 100% accurately identify group work flags for all events, leading to
potentially skewed results.
Pattern 11: Peer mobbing. This pattern was applied to CCC19, BPIC12,
BPIC2017, and Hospital. Peer mobbing was only detected in BPIC12, with a 110
instances. Analysis: Two threshold values are used in the code for this pattern,



Spotting the Weasel at Work 15

which bear potential for causing false positives and negatives again, as the ideal
value to use for threshold values always depends on the context and is subjective.
Pattern 12: Boss mobbing. Among the 13 patterns, Boss Mobbing could not
be applied to the real-world data, as there is no information which resources play
this role and since when. No realistic assumption could be made about it.
Pattern 13: Social borrowing. This pattern was applied to CCC19 and
BPIC2017. No social borrowing was detected in CCC19. BPIC17 presented 1192
cases of this pattern, equivalent to 5.36%. Analysis: A resource may receive
multiple flags for a time interval in which it worked slower, especially if there are
other resources whose working times align with that interval. This situation can
yield false positives. Additionally, the setting of a threshold value to define when
the average time difference of the borrowing resource is considered significant,
may lead to false positives and negatives.

Table 2: Summary of the percentage of each pattern (P1–13) in event logs.
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

BPIC12 0 6.56 61.5 5.72 6.32 30.56 30.61 62.73 31.52 60.87 4 - -
BPIC17 0 12.85 100 35.51 3.96 61.54 24.85 40.47 10.24 70.47 0 - 5.36
CCC19 0 13.79 40.91 1.72 2.65 0 1 50 0 0 0 - 0
Hospital 0.0019 0.004 9.27 0.73 - - 1 - - 0 - -

Discussion. Table 2 summarizes main results of the detection of the patterns
in the real-world event logs. While subject to limitations, this paper presents
a first successful implementaiton of the thirteen behavioral patterns to detect
inappropriate behavior at work using event logs. The results indicate varying levels
of occurrence and distribution of these patterns across different datasets. While
limitations may exist due to assumptions made when applying our algorithms
to real-world data, it is still possible to observe a certain degree of presence of
inappropriate behavior. This is useful to raise flags for further investigation.

Our results also showcase the challenges associated with detecting these pat-
terns, such as the potential for false positives and negatives due to the subjective
nature of threshold values. For instance, the Performance Blow-Out pattern’s
detection relies heavily on comparing completion times of similar tasks across
different resources. Variations in these times may not always indicate inappropri-
ate behavior but could be influenced by external factors such as task complexity
or resource skill levels. Furthemore, the implementation of these patterns re-
vealed the necessity for contextual information. To avoid misclassification, domain
knowledge must be taken into account.

6 Conclusion

In this study, we have developed and implemented a set of thirteen behavioral
patterns to detect inappropriate behaviors within organizational event logs, using
design patterns to guide our specification. Our results on real-world datasets



16 Bala et al.

reveal various significant occurrences of specific patterns that may have potential
impacts in the organization.

The implications of our study point towards proactive management and
improvement of work conditions within an organization. Future work should
focus on refining the behavioral patterns and validate their applicability across
various organizational settings.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

2. van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from
event logs. Computer Supported Cooperative Work (CSCW) 14, 549–593 (2005)

3. van der Aalst, W.M.: Process mining and simulation: A match made in heaven! In:
SummerSim. pp. 4–1 (2018)

4. Bala, S.: Towards mining inappropriate behaviour at work (Jul 2024). https://doi.
org/10.5281/zenodo.12656557

5. Brock, M.E., Martin, L.E., Buckley, M.R.: Time theft in organizations: The devel-
opment of the time banditry questionnaire. International Journal of Selection and
Assessment 21, 309–321 (9 2013)

6. del-Río-Ortega, A., Resinas, M., Cortés, A.R.: Defining process performance indica-
tors: An ontological approach. In: OTM Conferences (1). pp. 555–572 (2010)

7. Ferreira, D.R., Alves, C.: Discovering user communities in large event logs. In:
Business Process Management Workshops (1). pp. 123–134 (2011)

8. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.M.: Design patterns: Abstraction
and reuse of object-oriented design (reprint). In: Software Pioneers, pp. 701–717.
Springer Berlin Heidelberg (2002)

9. Lashkevich, K., Milani, F., Chapela-Campa, D., Suvorau, I., Dumas, M.: Why am
I waiting? data-driven analysis of waiting times in business processes. In: CAiSE.
pp. 174–190 (2023)

10. Leyer, M., ter Hofstede, A.H.M., Syed, R.: Detecting weasels at work: A theory-
driven behavioural process mining approach. In: BPM (Forum). Lecture Notes in
Business Information Processing, vol. 490, pp. 337–354. Springer (2023)

11. Martin, N., Depaire, B., Caris, A.: The use of process mining in business process
simulation model construction - structuring the field. Bus. Inf. Syst. Eng. 58(1),
73–87 (2016)

12. Meckling, W.H., Jensen, M.C.: Theory of the firm. Managerial Behavior, Agency
Costs and Ownership Structure (1976)

13. Mustroph, H., Winter, K., Rinderle-Ma, S.: Social network mining from natural
language text and event logs for compliance deviation detection. In: CoopIS. pp.
347–365 (2023)

14. Song, M., van der Aalst, W.M.P.: Towards comprehensive support for organizational
mining. Decis. Support Syst. 46(1), 300–317 (2008)

15. Song, M., van der Aalst, W.M.: Supporting process mining by showing events at a
glance. In: Proceedings of the 17th Annual Workshop on Information Technologies
and Systems (WITS). pp. 139–145 (2007)

https://doi.org/10.5281/zenodo.12656557
https://doi.org/10.5281/zenodo.12656557
https://doi.org/10.5281/zenodo.12656557
https://doi.org/10.5281/zenodo.12656557

	Spotting the Weasel at Work: Mining Inappropriate Behavior Patterns in Event Logs 
	Introduction
	Literature Review
	Methodology
	Design Patterns Specifications
	Evaluation and Analysis
	Conclusion


