
A Tree-Based Definition of Business Process
Conformance

Sylvain Hallé

Laboratoire d’informatique formelle
Université du Québec à Chicoutimi, Canada

Abstract. Conformance checking is a process that typically produces a binary
pass/fail verdict. Yet, there exist situations where it is desirable to qualify the
extent to which the execution of a process satisfies or violates a given condition.
To this end, the paper proposes a relation on event traces that compares the tree
resulting from the evaluation of a conformance condition on each of them. This
relation neither requires Boolean conditions to be rewritten or adapted, nor expects
additional information (such as weights) from the user.

1 Introduction

Conformance checking refers to the task of assessing whether the execution of an
information system satisfies a set of conditions stipulating its expected behavior [17]; the
process has at times also been labelled as compliance [12,22]. Under different names, this
concept can be found in a variety of situations; for instance, it can be used to determine
if a business process log follows business rules [3, 7, 29, 30], to check that the execution
of a computer program is exempt from bugs or security policy violations [5], or to verify
that a web service is used according to a specified protocol [10, 20, 33]. To a large extent,
even the symbolic pattern matching used by some types of intrusion detection systems
can be seen as a form of (anti-) conformance checking [36].

In its simplest form, the result produced by a conformance checking procedure is a
Boolean verdict. This all-or-nothing behavior has long been identified as a limitation
to the usefulness of such techniques in practice, due to the scarce information provided
to a user as to the cause of a violation, its location in the execution of the system, and
possibly the severity or impact of this violation on the global operation of the system.
Consequently, various approaches have been proposed to complement or replace a
true/false verdict with additional elements aimed at facilitating diagnostics: aligning an
execution to a process model to identify points of discrepancy [37], identifying subsets
of an execution or a property that explain a violation [14,18], or replacing a conformance
condition with more general queries on a process log [34].

However, there exist situations where a user may not be interested in locating the
source of an error, but rather to assess to what extent a condition has been satisfied or
violated. For instance, a process that inverts the expected order of a few operations a few
times should be given lower troubleshooting priority than another that regularly performs
operations out of order. In Section 2, we shall see that a few approaches have been put
forward to replace a two-valued verdict with a finer-grained scale to which executions of

a system can be mapped, and thus ordered; for most of them, that scale is a closed interval
of real numbers. However, these techniques require one to explicitly define counters and
fine-tune user-defined thresholds, and the numerical result can be likened to a form of
“percentage of violation”, but its exact semantics is typically difficult to grasp.

After Section 3 provides a formal model for expressing conditions on event sequences,
Section 4 proposes an alternate approach to conformance based on a different premise.
Instead of attempting to assign a (seldom meaningful) number to each run of a system, it
suggests the use of a relation that simply compares two executions, stating whether one
of the two is preferable to the other. It does so by comparing tree structures resulting
from the evaluation of a condition written in LTL.

This evaluation procedure has been implemented into a tool that is described in
Section 5. Experiments show that the proposed relation can efficiently compare executions
in logs and on constraints extracted from real-world scenarios. This opens the way to
multiple applications and extensions of this principle, which are discussed in Section 6.

2 The Need for Finer-Grained Conformance Verdicts

The execution of a system or process can be symbolically represented by a sequence (also
called a trace) of data elements representing different operations or actions occurring
at different times. A conformance property is a condition on such an execution that is
answered with true or false: either the sequence is conforming, or it is not. For example, a
statement such as “every received message must be handled with a reply within 24 hours”
admits only two verdicts, since a message is either dealt with on time or not, even if only
by one minute. Such conditions, formulated in this way, do not allow for a “gray area”.
In this section, we first illustrate situations where a notion of “partial satisfaction” would
be appropriate, and then survey the various works that attempted to tackle this problem.

2.1 Motivation

It is important from the outset to clarify what is meant by the notion of “degrees” of
satisfaction or violation of a property, which can be confused with other situations.
For example, one might think that a condition like “every received message must be
replied to within 24 hours, with a maximum of one exception” admits multiple degrees of
satisfaction. However, this is not the case: it is indeed a property that adds one exception
to the rule stated above, but we remain in the Boolean domain —either at least one
message is replied to late, or not. There are no more degrees of satisfaction of this
condition than in the previous case.

The same applies to Service Level Agreements (SLAs), whose terms are often
expressed in the form of a series of levels describing the quality of service promised
to a consumer. Thus, one could define Tier 1 of a web hosting service as promising
99.9% uptime, while Tiers 2 and 3 would provide 99% and 90%, respectively. However,
what appears to be degrees of satisfaction of a condition is in reality simulated by the
overlap of a chain of conditions, each being Boolean in nature (either the service reaches
the announced threshold or not) and logically implying the next. What we seek to do is

2

Obtain
Customer

Info

Identify
Customer

Info

Retrieve
Full

Customer
Dtl

Analyze
Customer
Relation

Select
Deposit
Service

Submit
Deposit

Prepare
Prop. Doc

Propose
Account
Opening

Schedule
Status
Review

Open Acc
Status
Review

Verify
Customer

ID

Open
Account

Validate
Acc Info

Close Acc

Apply Acc
Policy

Activate
Acc

Record
Acc
Info

Evaluate
Deposit

Val

Do
Deposit

Report
Large

Deposit

Notify
Customer

Non-VIP

VIP

Record
Customer

Info

Receive
customer
request

Fig. 1: A BPMN diagram for a banking process; figure reproduced from [2].

the opposite: state a single condition, which at any moment is either true or false, but
somehow manage to distinguish multiple degrees of satisfaction or violation.

As a running example, we consider the business process model taken from [26],
illustrated in Figure 1. It describes the process of creating a new account for a customer
and making an initial deposit into it, following the banking regulations imposed by the
People’s Bank of China. The process has been used in past works on business process
conformance (e.g. [2,22]) and is subject to a wide array of potential constraints; however
for the purpose of this paper, we shall focus on four such constraints, listed below:

1. No account must be open without first obtaining and verifying customer information.
2. For VIP customers, an account should be open at most one week after the request.
3. A manager must perform either the preparation of the documentation, the opening

of the account or the validation of the account.
4. A deposit must be immediately preceded by an evaluation of its amount.

An execution of the process violates Condition 1 either because it is missing the
obtain action or the verify action. However, one could argue that an execution where
both of these activities are absent is an even greater violation of the condition. Thus, if
evaluating Condition 1 on the former produces the “false” outcome, evaluating it on the
the latter should produce an even “falser” value. This highlights the need for more than
one verdict indicating the violation of a condition.

On its side, Condition 2 is violated when a VIP customer is not given an account in
the expected delay. Yet, missing the delay by one hour is probably less detrimental than
exceeding it by one week. Here again, multiple levels of violation would allow making
such a distinction. Conversely, the condition is satisfied if the account if created on time;
however, one could argue that the quicker the account is created, the better; a client
getting their account in one day shows a higher quality of service than if their request is
being answered at the last possible moment.

Therefore, in addition tomultiple degrees of violation, it is also desirable to distinguish
between multiple executions that satisfy a condition. The same idea is conveyed by
Condition 3, which ensures that at least one of three key activities is conducted by a senior
staff member. An execution of the process where more than one of these activities is

3

handled by a manager could be seen as exceeding expectations, and thus be ranked higher
than an instance where only the bare minimum is done to comply with the regulation.

Finally, Figure 1 reveals that Condition 4 can be satisfied in two different ways:
either substantially by evaluating and then allowing a deposit, or vacuously if no deposit
ever takes place. However, it can be argued that without additional context, neither is a
preferable way of satisfying the condition, although they are essentially distinct. Thus,
each should be associated with positive verdicts, but without these verdicts necessarily
being comparable. The same can be said, at a higher level, of two non-conformant
instances of the process violating a different condition from the list. It would be ill-
advised to arbitrarily declare one violation to be worse than another —which highlights
the need for uncomparable negative verdicts as well.

2.2 Related Work

Early work has focused on the study of similarity metrics between event sequences [13,31].
In this context, two sequences of events are more or less “similar” depending on the
amount of edit operations that need to be applied in order to turn one sequence into
the other. However, similarity is blind to any notion of correctness with respect to a
condition; it is only possible to tell how far apart are two execution sequences. Moreover,
events are considered as atomic symbols, so differences in parameters are not taken into
account (except for the case of timestamps in [31]).

The degree to which a trace satisfies a specific process description can first be quanti-
fied by finding an alignment, which can be summarized as a mapping between contiguous
events of a trace and contiguous transitions in a process model [37]. Discontinuities in an
alignment (e.g. swapping, inserting or deleting an event) indicate a discrepancy between
the trace and the model, and such discontinuities can be counted and used as numerical
measure of deviation. A similar approach consists of calculating the distance between a
target event trace with a set traces used as a reference [27].

On their side, grey security policies are conditions on a sequence of events that
produce a real value in the unit interval [35]. For example, a condition that states that
every file that is open must eventually be closed would assign a score to a trace depending
on the number of open files that have not been closed. However, conditions are expressed
in an ad hoc manner using user-defined counters or other devices providing a numerical
outcome, which are specific to each situation. TK-LTL attempts to resolve the issue by
providing an extension of Linear Temporal Logic that allows users to write assertions on
the number of times a given condition is satisfied [23].

Similarly, fuzzy LTL is an extension of LTL where the truth value of a proposition
is replaced by a real number between 0 and 1 [25]. However, non-Boolean verdict is
only obtained if the ground terms of an expression take a fractional value; therefore,
its measure represents imprecise observations, but not partial satisfaction. Another
real-valued semantics of LTL is proposed [4], in which, for example, a temporal operator
stating that a condition is always true is relaxed so that it can be false “a few times” without
compromising satisfaction. One can also consider the conformance of an execution across
multiple dimensions (e.g. time, ordering, cost) and evaluate a user-defined metric on the
unit interval on each dimension; those values can then be aggregated to obtain a genral
conformance score [24].

4

When considering properties admitting compensation (such as the case of deontic
logic) one can distinguish between executions that are ideal (the main condition is
fulfilled), sub-ideal (the condition is violated, but the stipulated compensation was duly
executed) and non-ideal (a mandatory compensation was not executed) [28]. The count
of possible executions in a business process model belonging to each category can form
the basis of a numerical compliance metric, again in [0, 1].

Finally, informativeness is a measure that is associated to a trace depending on the
number of “non-essential events” it contains, i.e. events that can be removed from a
trace without compromising conformance [6]. It was introduced in the context of process
mining, in order to quantify the extent to which an execution trace reveals information
about optional paths in a process model. However, it presents the downside of only
applying to conforming traces, and requires the user to manually assign weights to each
event.

2.3 Limitations of Existing Approaches

All these approaches provide a way to quantify, or at the very least, allow some degree of
comparison between multiple event traces, and therefore offer a verdict that is arguably
more detailed than a simple pass/fail response. That said, they come with several
limitations, which we detail below.

With the exception of informativeness, the aforementioned approaches do not
distinguish between successful executions. Indeed, a conforming trace has no discontinuity
when searching for an alignment with a process model, and logic-based formalisms
producing a numerical truth value map all satisfying traces to 1. Yet, we have seen in the
examples above that there is value in distinguishing a process that barely conforms with
a regulation from another one that largely fulfills expectations. Moreover, many of these
approaches consider events as atomic symbols, or otherwise only focus on the order in
which the events are observed. This does not allow for measuring deviations from other
types of conditions, such as those related to the values of parameters that these events
might contain.

In some cases, a condition that was originally expressed as a true/false assertion must
be rewritten by the user so that a more detailed verdict can be returned. For example, in
the context of TK-LTL, it is indeed possible to relax the condition "every opened file
must be closed" to “there are no more than 1% of files that are not closed,” but this is only
achieved by replacing the original specification with a completely different expression
where the count of files and the expected fraction are explicitly mentioned.

More surprisingly, it can also be considered a problem that these approaches associate
traces with numerical values, for several reasons. First, calculating this value is generally
complex and its precise meaning often eludes intuition. Furthermore, mapping traces to
numbers can lead to improper interpretations, such as the fact that an execution obtaining
a score of 1/4 is “half as true” as another with a verdict of 1/2.

Finally, the last problem lies in the fact that the set of real numbers is subject to a total
order, which implies that for any two distinct traces, one of them is always ranked lower
than the other —even in situations where this comparison is not appropriate. Consider for
example the simple case of the statement a ∧ b. According to the semantics of existing
works, an execution that satisfies a but not b is equivalent (i.e. is scored identically) to an

5

execution that does the opposite, since both fail for “half” of their arguments. Manually
defined weights can give higher precedence to one of the terms, but the eventuality that
these two types of failures are simply distinct and incomparable cannot be accounted for.

3 Conditions on Event Sequences

We start by briefly describing the formal foundations of conformance used in this paper.
With the exception of evaluation trees (§3.3), these notions have already been presented
and used in past works about conformance, and thus this section should be seen as a
quick refresher.

3.1 Event Model

Let P be an arbitrary set of parameter names, and V be a set of values. An event is
modeled as a total function e : P → V , which maps every parameter to a value. We
reserve a special symbol # to represent the fact that no value is assigned to a parameter
(i.e. that it is absent from an event). Suppose for example that P = {a, b, c} is the set of
parameter names and their values are natural numbers (i.e. V = N). The fact that an event
assigns the value 3 to a and the value 1 to c, leaving b undefined, shall be denoted by
{a 7→ 3, c 7→ 1}.

We suppose that the execution of a process produces a finite sequence of events
e = e0, . . . , ek called an event trace. We denote by E∗ the set of all finite traces of events.
Following conventions, the notation e[i] will designate the i-th event of e (indices starting
at 0), e[i..] will stand for the suffix of e that starts at index i, while e[..i] will stand for the
prefix of e that ends at index i. The length of e is noted |e|, and ε designates the unique
trace of length 0.

3.2 Linear Temporal Logic

In order to express conditions on what constitute valid traces, we take up an existing
logical formalism called Linear Temporal Logic (LTL). A sequence of events e is said to
satisfy an expression ϕ, noted e |= ϕ, if it follows the semantic rules shown in Table 1. In
this table, p denotes an arbitrary predicate evaluated on concrete arguments π1, . . . , πn.

e |= p(π1, . . . , πn) ⇔ p(π1, . . . , πn) holds in e[0]
e |= ¬ϕ ⇔ e 6 |= ϕ

e |= ϕ ∧ ψ ⇔ e |= ϕ and e |= ψ
e |= X ϕ ⇔ e[1..] |= ϕ
e |= G ϕ ⇔ e[i..] |= ϕ for every i ∈ [0, |e| − 1]
e |= Y ϕ ⇔ e[..|e| − 2] |= ϕ
e |= H ϕ ⇔ e[..i] |= ϕ for every i ∈ [0, |e| − 1]

Table 1: The formal semantics of LTL with past operators.

Boolean connectives have their usual meaning. The temporal operator G means
“globally”. For example, the formula G ϕ means that formula ϕ is true in every suffix of

6

the trace, starting from the current event. The operatorXmeans “next”; it is true whenever
ϕ holds in the suffix starting at the next event of the trace. Operators H (“historically”)
and Y (“yesterday”) are the past duals of G and X: H ϕ holds for some trace e if ϕ holds
in every prefix of e, while Y ϕ holds if ϕ holds for the prefix of e that omits the last
event. The definition of the remaining connectives and operators is obtained through
the classical identities.1 The presence of past-time modalities does not increase the
expressiveness of the language, but are sufficient to express the “until” modality using
a mix of unary future and past operators, since ϕ U ψ can be rewritten as F(ψ ∧H ϕ).
A specific semantics needs to be specified for these operators in the case of an empty
trace; we follow conventional definitions assuming that ε |= G ϕ, ε 6 |= X ϕ, and dually for
their past equivalents. This setup it is expressive enough for a wide range of constraints,
including temporal patterns for finite-state specifications [11], as well as specification
languages whose semantics is grounded in LTL, such as ConDec [32] or DECLARE [1].

We can revisit the conditions of the bank process of Section 2.1 and express them as
LTL expressions. We assume that each event in the process has attributes respectively
representing the name of the activity being executed (a), the status of the client in this
process instance (s), the seniority level of the employee performing the activity (`), and
the time elapsed since the reception of the original request (τ).

1. H (a = “open”→ (O (a = “obtain”) ∧O (a = “verify”)))
2. s = “VIP”→ (G (a = “open”→ τ < 2))
3. F (` = “manager” ∧ a = “prepare”) ∨ F (` = “manager” ∧ a = “open”)
∨ F (` = “manager” ∧ a = “validate”)

4. H (a = “deposit”→ Y a = “evaluate”)

3.3 Evaluation Trees

The recursive evaluation of an LTL expression on a sequence of events induces a tree
structure that can be leveraged to compare two executions of a given process or system,
which we shall call the evaluation tree. In this context, an evaluation tree node can be
represented as a vector of the form t = 〈`, [t1, . . . , tn]〉, where ` is an arbitrary textual
label, and the ti are themselves tree nodes corresponding to the children of t (for a leaf
node, the list is simply empty). Given a trace e and an LTL expression ϕ, the evaluation
tree of ϕ on e, noted τ(ϕ, e), is the tree structure resulting from the recursive application
of the rules specified in Table 2.

The label of each node represents either the predicate, Boolean connective or
temporal operator. The children of the nodes correspond to the recursive evaluation of
the arguments. For example, in the case of a conjunction ϕ1 ∧ · · · ∧ ϕn, children of the
“∧” parent are the evaluation trees resulting from the evaluation of each ϕi . Temporal
operators warrant further discussion; the case of a formula of the form G ϕ conveys the
general principle followed by the remaining temporal modalities. The top-level node is
labeled with G, and the children of this node correspond to the evaluation tree of ϕ for
all non-empty suffixes of the input trace e.

Nodes can also be associated with a “color” that represents the truth value of the
LTL expression they stand for. The root node of τ(e, ϕ) will be colored either green

1 Namely: ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ), ϕ→ ψ ≡ ¬ϕ ∨ ψ, F ϕ ≡ ¬G¬ϕ, and O ϕ ≡ ¬H¬ϕ.

7

τ(e, p(π1, . . . , πn)) = 〈p, [π1, . . . , πn]〉
τ(e,¬ϕ) = 〈¬, [τ(e, ϕ)]〉

τ(e, ϕ1 ∧ · · · ∧ ϕn) = 〈∧, [τ(e, ϕ1), . . . , τ(e, ϕn)]〉
τ(e, ϕ1 ∨ · · · ∧ ϕn) = 〈∨, [τ(e, ϕ1), . . . , τ(e, ϕn)]〉

τ(e,X ϕ) = 〈X, [τ(e[1..], ϕ)]〉
τ(e,G ϕ) = 〈G, [τ(e[0..], ϕ), τ(e[1..], ϕ), . . . , τ(e[−1], ϕ)]〉
τ(e,F ϕ) = 〈F, [τ(e[..|e| − 2], ϕ), τ(e[1..], ϕ), . . . , τ(e[−1], ϕ)]〉
τ(e,Y ϕ) = 〈Y, [τ(e[1..], ϕ)]〉
τ(e,H ϕ) = 〈H, [τ(e[..|e| − 1], ϕ), τ(e[..|e| − 2], ϕ), . . . , τ(e[0], ϕ)]〉
τ(e,O ϕ) = 〈O, [τ(e[..|e| − 1], ϕ), τ(e[..|e| − 2], ϕ), . . . , τ(e[0], ϕ)]〉

Table 2: Definition of the evaluation tree for an LTL expression evaluated on a trace.
or red, depending on whether e |= ϕ or not. Since by construction, the leaf nodes of
an evaluation tree are concrete values given as arguments to a predicate, and can be
constants of any type, these nodes will be left uncolored.

G

{a ↦ 1, b ↦ 0}

∨

=
a 0

=

b 0

∨

=
a 0

=

b 0

∨

=
a 0

=

b 0

{a ↦ 1, b ↦ 1} {a ↦ 0, b ↦ 0}

Fig. 2: An example of an evaluation tree.

Figure 2 shows an example of such a colored evaluation tree, for the expression
G(a = 0 ∨ b = 0). It is evaluated on a trace e of three events, the value of a and b in each
of them being shown at the bottom of the figure. As stipulated in Table 2, each suffix of
the trace spawns a distinct subtree of the root node labeled “G”, where the condition
a = 0 ∨ b = 0 is evaluated on the first event of the suffix. The color of each node is
assigned according to the satisfaction of the corresponding sub-expression.

4 A Tree-Based Definition of Conformance

As with any other logic-based formalization of valid executions, the semantics of Table 1
only outputs a pass/fail verdict. Based on the observations of the existing multi-valued
verdict definitions surveyed in Section 2.2, we set on to propose an alternative notion of
conformance with respect to a condition that addresses the issues raised in Section 2.3.

Since the numerical value that these approaches associate with a trace generally
carries little meaning in itself, its only legitimate use lies in the fact that it can be used
to compare two traces. Yet, to reach this goal, one can simply establish a relation (in
the mathematical sense of the term) that allows one to determine, given two traces e
and e′, which of the two (if any) comes before the other. Therefore, we propose an
alternative notion of conformance that compares the trees resulting from the evaluation
of a condition. We shall first formally define this relation, and highlight its key properties
through simple examples.

8

4.1 Definition of a Comparison Relation

In the following, without loss of generality, we assume that an LTL condition ϕ is
expressed in Negated Normal Form (NNF). For two evaluation trees, we then define
subsumption as follows.

Definition 1. Let e1 and e2 be two event traces, ϕ be an LTL formula in NNF, and t1
and t2 be the corresponding evaluation trees resulting from the evaluation of ϕ through τ.
We say that t1 is subsumed by t2, noted t1 v t2, if the roots of both trees have the same
label, and if the following rules are satisfied:

(a) if the root of t1 is green, then 1) the root of t2 is green and 2) for every green child t ′1
of the root of t1, there exists a distinct child t ′2 of the root of t2 such that t ′1 v t ′2;

(b) if the root of t1 is red, then for every red child t ′2 of the root of t2, there exists a
distinct child t ′1 of the root of t1 such that t ′1 v t ′2.

Intuitively, an evaluation tree t1 is subsumed by another tree t2 if the latter represents
an execution of a process that is “more favorable” than the former with respect to ϕ. If
none of these conditions are satisfied, then t1 is not subsumed by t2; note however that,
contrary to numbers, this does not imply the reverse statement (i.e. that t2 is subsumed by
t1). We shall note t1 @ t2 when t1 v t2 but t2 @ t1. We also note t1 ≈ t2 when both t1 v t2
and t2 v t1; this is possible even when t1 , t2. Let us now illustrate the consequences of
this definition on a few simple examples.

Boolean Connectives First, let us consider the property ϕ defined as a = 0 ∨ b = 0. It
imposes a condition on two attributes of the first event of an execution. Figure 3a shows
the evaluation tree for two traces made of a single event: the first is such that a = 0 and
b = 1, and the second has a = 0 and b = 0. Both of these traces satisfy ϕ, and thus
produce trees with a green root.

∨

=
a 0

=

b 0

∨

=
a 0

=

b 0

t1 t2

{a ↦ 0, b ↦ 1} {a ↦ 0, b ↦ 0}

⊑

(a) ∨ satisfied

∧

=
a 0

=

b 0

∧

=
a 0

=

b 0

t1 t2

{a ↦ 1, b ↦ 1} {a ↦ 0, b ↦ 1}

⊑

(b) ∧ violated

Fig. 3: Two examples of subsumption for the ∧ and ∨ connectives.

We can apply Definition 1 and conclude that t1 v t2. First, condition a.1 is obviously
satisfied. For condition a.2, one must exhibit a mapping between the (single) green
child t ′1 of t1, and some child t ′2 of t2, such that t ′1 v t ′2. The purple arrow shows the
only possible mapping. Recursively, one can apply Definition 1 again and observe that
t ′1 is indeed subsumed by t ′2 (the conclusion is direct in this case as the two trees are
identical). However, it is not possible to conclude that t2 v t1. Since t2 has two green
nodes, by Definition 1, it is impossible to subsume each of its green subtrees by a distinct
subtree of t. These conclusions match the intuition: ϕ stipulates that an execution is

9

valid whenever a or b is null in the first event; t represents the case where one of these
conditions is fulfilled, while t ′ represents the case where both are fulfilled. In a way
t v t ′ illustrates the fact that, while the two executions satisfy the property, the second
exceeds the expectations compared to the first.

The reverse argument can be made for two executions that violate a property, as
is shown in Figure 3b. This time, t1 v t2 holds because every red subtree of t2 can be
associated to a subtree of t1 that is subsumed by it (purple arrow). By a symmetrical
argument, reversing the order of the trees does not satisfy the subsumption relation. The
fact that t1 v t2, in this case, illustrates the fact that while both executions violate the
condition, the first violates it by a larger margin.

Note however that subsumption is not merely a matter of counting how many terms
of a connective are satisfied or violated. As an example, consider the trees of Figure 4, for
the property ϕ defined as a = 0 ∨ (b = 0 ∧ c = 0). Although t1 v t2 and t1 v t3, we have
that neither t2 nor t3 subsumes the other. The conjunction fails in t2 because b , 0, while
it fails in t3 because c , 0; by condition (c) of Definition 1, no subsumption relation
exists between these subtrees. This is in line with the observation made previously that
violating a property for two distinct “reasons”, even though each represents a single
failure, should not immediately be deemed equivalent.

⊑

t2

{a ↦ 1, b ↦ 1, c ↦ 1}

∨

=
a 0

b 0 c 0

∧

∨

=
a 0 =

b 0 c 0

∧

∨

=
a 0 =

b 0

=
c 0

∧

t1 t3

{a ↦ 1, b ↦ 0, c ↦ 1} {a ↦ 1, b ↦ 1, c ↦ 0}

===

⊑

Fig. 4: Three evaluation trees for the property a = 0 ∨ (b = 0 ∧ c = 0).

Temporal Operators So far, the mapping involved in conditions (a.2) and (b) of
Definition 1 has amounted to a direct association between children at matching positions
in both trees. However, this is not always the case, as can be seen in the handling of
conformance requirements involving temporal operators. Figure 5a shows two evaluation
trees for the property F(a = 0). The first tree, t1, corresponds to a trace of length 2 where
a = 0 in the second event, while the second tree, t2, corresponds to a trace of length 4
where a = 0 in the first and fourth events. One can observe that t1 v t2; however, this
time the mapping between the second child of t1 associates it to the first child of t2.

⊑ F

=

0

=

0

t2

{a ↦ 0}, {a ↦ 1}, {a ↦ 1}, {a ↦ 0}

=

0

=

0

{a ↦ 1}, {a ↦ 0}

F

=

0

=
a aa aa a 0

t1

(a) F satisfied

G

=

0

=

0

t1

{a ↦ 0}, {a ↦ 1}, {a ↦ 1}, {a ↦ 0}

⊑

=

0

=

0

{a ↦ 1}, {a ↦ 0}

G

=

0

=
a aa a a a 0

t2

(b) G violated

Fig. 5: Two examples of subsumption for the F and G temporal modalities.

This example highlights a few characteristics of Definition 1. First, note that the
mapping between children of both trees is not unique; another possibility would have

10

been to match the green child of t1 with the fourth child of t2; Definition 1 only requires
the existence of a mapping. Second, the position in the trace where trees are associated is
irrelevant –provided that these trees satisfy the subsumption relationship. In other words,
two traces that satisfy a = 0 exactly once will be deemed equivalent regardless of the
actual index of the event where a = 0. As with Boolean connectives, the dual reasoning
can be made on executions that violate a temporal property. Figure 5b shows an example
for the condition G(a = 0) and the same two traces as before.

4.2 Properties of v

The previous examples have shown that the subsumption relation addresses some of
the issues leveled at related works on the topic. First, it works directly on a condition
producing a Boolean pass/fail verdict, and does not require it to be somehow rewritten in
order to allow a finer-grained verdict. Rather, it extracts additional information from the
evaluation of the condition to determine if one trace ranks higher than the other, if any. In
the same way, no additional information (in the form of user-defined weights, aggregation
functions, external counters, etc.), is required to calculate this ranking. The subsumption
relation can thus be retro-fitted on any pre-existing set of conditions expressed in a
notation that is covered by LTL.

In addition, its relatively simple expression makes it possible to formally establish
properties of the relation. For instance, we can show that this comparison relation is
“well-behaved”, in the sense that it forms a preorder over the set of evaluation trees (the
proof is relatively simple and is omitted due to space limitations).

Theorem 1 (Preorder). Let ϕ be a condition, e1, e2, e3 be three traces and t1, t2, t3 be
their respective evaluation trees. Then: 1) t1 v t1; 2) if t1 v t2 and t2 v t3, then t1 v t3.

Finally, one can remark that in the case of a green root, only green children need to
be subsumed by some child of the other tree. This entails that, in the case of Figure 5a,
an execution e where a is null in 2 out of 4 events will be ranked higher than another e′

where a is null once out of 2 events. The reasoning behind this behavior is that in the
case of t2, changing an event where a = 0 for another value still results in a conforming
execution, as a remaining occurrence of a = 0 still ensures that the property is satisfied.
In contrast, in t1, conformance hinges on the single occurrence where a = 0. There is,
therefore, a stronger support for the satisfaction of ϕ in t2. Note that this notion is not
appropriately conveyed if one were to express conformance through a ratio of true to
false terms (which, in that case, would rank e′ equal to e). A reverse argument can be
made in the case of red nodes for trees that violate a specification.

4.3 Handling Numerical Conditions

The conditions given as examples so far were limited to asserting the equality of certain
parameters to constants; the fact that these values were numbers was not considered
relevant. However, as seen in Section 2, there are scenarios where events can contain
numerical values from measurements (timestamps, prices, etc.), and the satisfaction
of a constraint may be modulated by the distance from the observed value to a certain
reference value.

11

Although our model based on evaluation trees is entirely discrete and involves no
arithmetic calculations, it is still possible, to a certain extent, to model this notion of
numerical distance. Consider, for example, the property stating that a = 4. One might
wish to view values close to 4, although they represent a violation of the condition, as
still preferable to more distant values, as shown at the top of Figure 6.

0 1 2 3 4 5 6 7 8

∧

0

≤

δ

a 4

1

≤

δ

a 4

2

≤

δ

a 4

∧

0

≤

δ

a 4

1

≤

δ

a 4

2

≤

δ

a 4
{a ↦ 2} {a ↦ 5}

t1 t2

Fig. 6: Subsumption for a condition involving a numerical value.

It is possible, without changing the definition of subsumption, to achieve such
behavior by replacing the original condition with an expression like δ(a, 4) ≤ 0∧δ(a, 4) ≤
1 ∧ δ(a, 4) ≤ 2, where δ is an auxiliary function defined as δ(x, y) = |x − y |. The trees t1
and t2 in Figure 6 show the result of evaluating this condition for two events, the first
where a = 2 and the second where a = 5. In the first case, only the last inequality is
satisfied, while the last two inequalities are satisfied in the second; as a result, t1 v t2.

Note that it is not necessary for the property provided by the user to be directly
written in this way. Instead, one could consider that a numerical equality be accompanied
by the definition of one or more distance intervals, and that the transformation into a
series of inequalities be performed automatically in the background. Also observe that
the same “trick” can be used in reverse for satisfaction: one could express the condition
that a lies between 2 and 6, and rank traces higher as the value gets close to 4.

4.4 Subsumption for a Set of Traces

The fact that v is a preorder entails that, given a LTL property ϕ and set of event
traces E = {e1, . . . , en}, one can define the equivalence class of ei , noted [ei], as the set
{e ∈ E : e ≈ ei}. The ordering relation on traces can be lifted to equivalence classes; we
have that [ei] v [e j] if and only if ei v e j . Given a LTL property ϕ and a set of traces
E , it is possible to characterize the structure of E by considering its Hasse diagram [9].
This diagram is defined as a graph whose vertices are the equivalence classes of E , and
for every pair of classes [e], [e′], a directed edge from the former to the latter exists
whenever [e] covers [e′]—that is, [e] v [e′] and there does not exist a distinct [e′′] such
that [e] v [e′′] v [e′].

As an example, consider the property ϕ defined as G(a = 0) ∨G(b = 0) against the
set of all traces of length 3 where, in each event, a and b take either the value 0 or 1. This
corresponds to a total of 64 distinct traces. Figure 7a shows the Hasse diagram of this set
with respect to ϕ. Each node in the diagram is labeled with the number of distinct traces
in the equivalence class it corresponds to. Following convention, the direction of edges
is from bottom to top; thus the bottom node labeled “1” corresponds to the single trace
where a = 0 and b = 0 in all three events. This trace is directly subsumed by two disjoint

12

set of traces, namely those where a is never null and b = 0 exactly once (to its top left),
and the reverse (to its top right).

1

1

3 3

3 3

99 11

393

393

(a) Original
0

0

0 1

0 0

10 612

000

051

(b) Sample log
1

1

3 3

3 3

99 11

393

393

(c) Service Level Agreement

Fig. 7: The Hasse diagram for a log with respect to the property G(a = 0) ∨G(b = 0).
The diagram presents a very regular structure, due to the simple and symmetric

nature of the underlying condition; more complex formulas induce diagrams with less
regularity. One can observe that, due to Definition 1, there exists a clear segregation
between conforming (green) and non-conforming (red) traces. In other words, while the
subsumption relation admits a form of comparison between execution traces, it never
blurs the border between satisfaction and violation.

Figure 7a shows a diagram for a complete set of traces of given length, considering
all possible assignments of parameters in all events. In reality, a log of a given process
is very unlikely to have this characteristic. Thus, it may be instructive to compute the
Hasse diagram of an actual set of logs for a given property, and to compare it to the
“abstract” version covering all possible behaviors. Figure 7b shows what such a diagram
could look like for a hypothetical log with respect to property ϕ. Most executions are
conforming; however almost all of them do so by satisfying only one of the two temporal
conditions: either a is always null but b never is (node labeled “12”), or the reverse (node
labeled “6”). Only two traces (the two green nodes “1”) satisfy one condition and the
other partially. Moreover, the violations observed (red nodes) are still “not too far” from
a correct execution: in both cases they have an immediate neighbor that is green. Larger
violations would be represented by nodes lying further down in the diagram.

As one can see, the analysis of this diagram can provide insight in the execution of a
process with respect to a conformance condition ϕ. It allows one to qualitatively assess
the degree to which the condition is satisfied or violated by each trace in a log, but also to
identify common reasons for a violation —since all traces in the same equivalence class
can be seen as sharing similar behavior with respect to ϕ. Approaches that associate a
numerical value to each trace have the result of flattening the whole set on a linear scale
that cannot reveal such structures.

5 Evaluating Tree-Based Conformance

The formal definition of conformance introduced in Section 4 has been implemented in
the form of a stand-alone tool. In this section, we discuss this implementation and present
preliminary results of the application of the subsumption relation on sample traces.

13

The implementation takes the form of a stand-alone Java-based library that is available
under an open source license2. In addition to the objects it defines and which can be
manipulated directly in a Java program, another possible use is as a command-line tool,
where one can read traces from local files and compare their evaluation tree with respect
to a given LTL conformance property. For example, to compare traces from two XML
files against an LTL property contained in text file phi.ltl, one would write:

$ java -jar tc.jar compare --property phi.ltl file1.xml file2.xml

If n trace filenames are provided, the output of the tool is an n × n matrix, where entry
(i, j) is 1 if the trace in file i is subsumed by the trace in file j, and 0 otherwise.

If compare is replaced by the action draw-trees, an image of the evaluation tree
is produced for each of the traces provided, and saved to a local file in the same folder.
Finally, the last supported action is draw-hasse, which generates the Hasse diagram of
the set of traces given as arguments. A command line option allows each evaluation tree
to be drawn to a file, with an indication of the node in the Hasse diagram it belongs to.

Definition 1 hides implicit complexity in that for two evaluation trees t1 and t2, one
must find an injection that maps each (either red or green) child of t1 to a unique (red or
green) child of the other. Suppose that t1 has m such children, and t2 has n ≥ m children;
these children can be represented as the discrete sets S1 = {1, . . . ,m} and S2 = {1, . . . , n}.
The number of possible injective functions S1 → S2 is m! ·

(n
m

)
. This could represent a

barrier to the use of the subsumption relation in practice. Therefore, we proceeded to
an experimental evaluation of the performance overhead induced by the evaluation of
this relation, for sample LTL conformance properties on sample logs. In addition to the
banking example discussed in Section 2.1, the scenarios and properties considered are:

– Beep Store: a set of logs fromaweb service implementing shopping cartmanipulations
similar to Amazon’s ECS [19]. Property Search item once looks for the occurrence
of an ItemSearch message, while Max shopping carts checks that the number of
CartCreate events does not exceed a certain threshold.

– CVC Procedure: operations recorded from multiple instances of a medical procedure,
from theConformanceCheckingChallenge 2019 [15]. PropertyMax duration ensures
that the delay between two successive operations does not exceed a predefined time,
while Procedure lifecycle checks several ordering relationships between operations.

Table 3 summarizes the results for each scenario. For each, the length of the traces
considered, the size of the corresponding evaluation trees, and the time required to
compare two trees is reported; this time includes the generation of the evaluation trees
and the evaluation of the subsumption relation. The T/O (timeout) column indicates the
number of tree pairs for which the evaluation of the relation exceeded the predefined
timeout of 3 seconds. In addition, we report on the number of pairs of traces that have
been compared, and the number of times the subsumption relation held between two
traces.

We can observe that the fears regarding the combinatorial explosion related to
searching for an injection between two trees did not materialize in these examples.

2 https://github.com/liflab/shaded-conformance

14

https://github.com/liflab/shaded-conformance

Table 3: Summary of experimental results.
Scenario Property Trace size Tree size Pairs Time (ms) T/O Subsumed Refin.Min. Max. Min. Max.
Beep Store Search item once 10 100 4 91 1770 2.27 0 802 1712

Max shopping carts 10 100 8 183 1770 2.96 0 1023 1657
CVC Procedure Max. duration 26 59 16 66 190 13.2 0 93 140

Procedure lifecycle 26 59 565 1291 190 106 0 113 73
Bank Condition 1 13 21 679 1599 45 585 33 13 11

Condition 2 13 21 16 66 45 53.7 0 45 0
Condition 3 13 21 277 445 45 133 0 29 39
Condition 4 13 21 102 150 45 52.2 0 38 15

Although we are dealing with traces of several dozen events and trees sometimes
exceeding a thousand nodes, the average evaluation time required to compare two trees
remains on the order of milliseconds.

More interestingly, the last column indicates the number of times the subsumption
relation provides more refined information than the simple Boolean evaluation of the
condition on each of the two trees t and t ′ considered. This occurs when both executions
either violate or satisfy the conformance condition, but the subsumption relation still
manages to distinguish between them (i.e., t1 @ t2, or vice versa). We can see that in
most cases, the subsumption relation provides added value for a significant proportion of
the tree pairs.

6 Conclusion

This article presented a new relationship that allows the comparison of two execution
traces relative to a conformance property, inducing a form of gradation in the level
with which a trace respects or violates the said property. Unlike existing approaches
that typically associate each trace with a numerical value, we saw that the so-called
subsumption relationship relies on the tree structure resulting from the evaluation of
a temporal logic formula for a given trace. This relationship can accommodate the
comparison of numerical values, and the examples illustrate that the ordering of the
traces it produces can be explained intuitively. In this sense, it is an effective and versatile
technique for analyzing the level of conformance of a set of traces.

This basic idea opens the way for several applications and extensions. Firstly, the
Hasse diagrams produced by a log and discussed in Section 4.4 can form the core of a new
diagnostic method to identify the reasons why a process meets or violates a requirement.
This diagram could also be used in the context of Service Level Agreements (SLA). An
SLA could be stated in the form of a Boolean condition, but be equipped with different
levels of service corresponding to strata in the Hasse diagram corresponding to the
property, as is shown in Figure 7c.

Although LTL is sufficient to model a large number of conformance constraints,
it would be desirable to extend the subsumption relationship itself to more expressive
specification languages, such as logics including the possibility of compensation for
a violation [16]. Finally, to promote the use of this comparison measure, in the short
term, we aim to integrate the stand-alone library presented in this article with existing
platforms, for example in the form of a plugin for the ProM tool [8], or an extension to
the BeepBeep library [21].

15

References

1. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing between
flexibility and support. Comput. Sci. Res. Dev. 23(2), 99–113 (2009). https://doi.org/
10.1007/S00450-009-0057-9, https://doi.org/10.1007/s00450-009-0057-9

2. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q and temporal
logic. In: Dumas, M., Reichert, M., Shan, M. (eds.) Business Process Management, 6th Interna-
tional Conference, BPM 2008, Milan, Italy, September 2-4, 2008. Proceedings. Lecture Notes
in Computer Science, vol. 5240, pp. 326–341. Springer (2008). https://doi.org/10.1007/
978-3-540-85758-7_24, https://doi.org/10.1007/978-3-540-85758-7_24

3. Awad, A., Weidlich, M., Weske, M.: Visually specifying compliance rules and explaining
their violations for business processes. J. Vis. Lang. Comput. 22(1), 30–55 (2011)

4. Baresi, L., Pasquale, L.: A Temporal Semantics for Fuzzy Linear Temporal
Logic. Tech. rep., https://www.academia.edu/2935585/A_Temporal_Semantics_
for_Fuzzy_Linear_Temporal_Logic

5. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification. In:
Lectures on Runtime Verification - Introductory and Advanced Topics, LNCS, vol. 10457, pp.
1–33. Springer (2018)

6. Burattin, A., Guizzardi, G., Maggi, F.M., Montali, M.: Fifty shades of green: How informative
is a compliant process trace? In: Giorgini, P., Weber, B. (eds.) Advanced Information Systems
Engineering, vol. 11483, pp. 611–626. Springer International Publishing, Cham (2019)

7. Chesani, F., Mello, P., Montali, M., Riguzzi, F., Sebastianis, M., Storari, S.: Checking
compliance of execution traces to business rules. In: BPM Workshops. pp. 134–145 (2008)

8. Claes, J., Poels, G.: Process mining and the prom framework: An exploratory survey. In: Rosa,
M.L., Soffer, P. (eds.) Business Process Management Workshops - BPM 2012 International
Workshops, Tallinn, Estonia, September 3, 2012. Revised Papers. Lecture Notes in Business In-
formation Processing, vol. 132, pp. 187–198. Springer (2012). https://doi.org/10.1007/
978-3-642-36285-9_19, https://doi.org/10.1007/978-3-642-36285-9_19

9. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press
(2002)

10. Díaz, G., Llana, L.: Contract compliance monitoring of web services. In: Lau, K., Lamersdorf,
W., Pimentel, E. (eds.) Service-Oriented and Cloud Computing - Second European Conference,
ESOCC2013,Málaga, Spain, September 11-13, 2013. Proceedings. Lecture Notes in Computer
Science, vol. 8135, pp. 119–133. Springer (2013)

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-
state verification. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) Proceedings of the 1999
International Conference on Software Engineering, ICSE’ 99, Los Angeles, CA, USA, May
16-22, 1999. pp. 411–420. ACM (1999)

12. Fdhila, W., Knuplesch, D., Rinderle-Ma, S., Reichert, M.: Verifying compliance in process
choreographies: Foundations, algorithms, and implementation. Inf. Syst. 108, 101983 (2022)

13. Feijs, L.M.G., Goga, N., Mauw, S., Tretmans, J.: Test Selection, Trace Distance and Heuristics,
pp. 267–282. Springer US, Boston, MA (2002)

14. Francalanza, A., Cini, C.: Computer says no: Verdict explainability for runtime monitors using
a local proof system. J. Log. Algebraic Methods Program. 119, 100636 (2021)

15. de la Fuente, R., Sepúlveda, M., Fuentes, R.: Central veinous catheter, compli-
ance checking challenge 2019 (2019), https://data.4tu.nl/repository/uuid:
c923af09-ce93-44c3-ace0-c5508cf103ad

16. Governatori, G.: The regorous approach to process compliance. In: Kolb, J., Weber, B.,
Hallé, S., Mayer, W., Ghose, A.K., Grossmann, G. (eds.) 19th IEEE International Enterprise
Distributed Object Computing Workshop, EDOC Workshops 2015, Adelaide, Australia,

16

https://doi.org/10.1007/S00450-009-0057-9
https://doi.org/10.1007/S00450-009-0057-9
https://doi.org/10.1007/S00450-009-0057-9
https://doi.org/10.1007/S00450-009-0057-9
https://doi.org/10.1007/s00450-009-0057-9
https://doi.org/10.1007/978-3-540-85758-7_24
https://doi.org/10.1007/978-3-540-85758-7_24
https://doi.org/10.1007/978-3-540-85758-7_24
https://doi.org/10.1007/978-3-540-85758-7_24
https://doi.org/10.1007/978-3-540-85758-7_24
https://www.academia.edu/2935585/A_Temporal_Semantics_for_Fuzzy_Linear_Temporal_Logic
https://www.academia.edu/2935585/A_Temporal_Semantics_for_Fuzzy_Linear_Temporal_Logic
https://doi.org/10.1007/978-3-642-36285-9_19
https://doi.org/10.1007/978-3-642-36285-9_19
https://doi.org/10.1007/978-3-642-36285-9_19
https://doi.org/10.1007/978-3-642-36285-9_19
https://doi.org/10.1007/978-3-642-36285-9_19
https://data.4tu.nl/repository/uuid:c923af09-ce93-44c3-ace0-c5508cf103ad
https://data.4tu.nl/repository/uuid:c923af09-ce93-44c3-ace0-c5508cf103ad

September 21-25, 2015. pp. 33–40. IEEE Computer Society (2015). https://doi.org/10.
1109/EDOCW.2015.28, https://doi.org/10.1109/EDOCW.2015.28

17. Groefsema, H., van Beest, N.R.T.P., Governatori, G.: On the use of the conformance and com-
pliance keywords during verification of business processes. In: Ciccio, C.D., Dijkman, R.M.,
del-Río-Ortega, A., Rinderle-Ma, S. (eds.) Business Process Management Forum - BPM 2022
Forum, Münster, Germany, September 11-16, 2022, Proceedings. Lecture Notes in Business
Information Processing, vol. 458, pp. 21–37. Springer (2022). https://doi.org/10.1007/
978-3-031-16171-1_2, https://doi.org/10.1007/978-3-031-16171-1_2

18. Hallé, S.: Explainable queries over event logs. In: 24th IEEE International Enterprise
Distributed Object Computing Conference, EDOC 2020, Eindhoven, The Netherlands, October
5-8, 2020. pp. 171–180. IEEE (2020)

19. Hallé, S., Villemaire, R.: Constraint-based invocation of stateful web services: The Beep
Store (case study). In: Lago, P., Lewis, G.A., Metzger, A., Tosic, V. (eds.) 4th International
ICSE Workshop on Principles of Engineering Service-Oriented Systems, PESOS 2012, June
4, 2012, Zurich, Switzerland. pp. 61–62. IEEE (2012)

20. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts with data.
IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

21. Hallé, S.: Event Stream Processing With BeepBeep 3: Log Crunching and Analysis Made
Easy. Presses de l’Université du Québec (2018)

22. Hashmi, M., Governatori, G., Lam, H., Wynn, M.T.: Are we done with business process
compliance: state of the art and challenges ahead. Knowl. Inf. Syst. 57(1), 79–133 (2018)

23. Khoury, R., Hallé, S.: Tally keeping-ltl: An LTL semantics for quantitative evaluation of LTL
specifications. In: 2018 IEEE International Conference on Information Reuse and Integration,
IRI 2018, Salt Lake City, UT, USA, July 6-9, 2018. pp. 495–502. IEEE (2018)

24. Lam, H., Hashmi, M., Kumar, A.: Towards a formal framework for partial compliance of
business processes. In: Rodríguez-Doncel, V., Palmirani, M., Araszkiewicz, M., Casanovas,
P., Pagallo, U., Sartor, G. (eds.) AI Approaches to the Complexity of Legal Systems XI-XII
- AICOL International Workshops 2018 and 2020: AICOL-XI@JURIX 2018, AICOL-
XII@JURIX 2020, XAILA@JURIX 2020, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 13048, pp. 90–105. Springer (2020). https://doi.org/10.1007/
978-3-030-89811-3_7, https://doi.org/10.1007/978-3-030-89811-3_7

25. Lamine, K.B., Kabanza, F.: History checking of temporal fuzzy logic formulas for monitoring
behavior-based mobile robots. In: 12th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2000), 13-15 November 2000, Vancouver, BC, Canada. pp. 312–319.
IEEE Computer Society (2000). https://doi.org/10.1109/TAI.2000.889888, https:
//doi.org/10.1109/TAI.2000.889888

26. Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business process
models. IBM Syst. J. 46(2), 335–362 (2007). https://doi.org/10.1147/SJ.462.0335,
https://doi.org/10.1147/sj.462.0335

27. Loh, C.S., Sheng, Y.: Maximum similarity index (MSI): A metric to differentiate the
performance of novices vs. multiple-experts in serious games. Comput. Hum. Behav. 39, 322–
330 (2014). https://doi.org/10.1016/J.CHB.2014.07.022, https://doi.org/10.
1016/j.chb.2014.07.022

28. Lu, R., Sadiq, S.W., Governatori, G.: Measurement of compliance distance in busi-
ness processes. Inf. Syst. Manag. 25(4), 344–355 (2008). https://doi.org/10.1080/
10580530802384613, https://doi.org/10.1080/10580530802384613

29. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Compliance
monitoring in business processes: Functionalities, application, and tool-support. Inf. Syst. 54,
209–234 (2015)

17

https://doi.org/10.1109/EDOCW.2015.28
https://doi.org/10.1109/EDOCW.2015.28
https://doi.org/10.1109/EDOCW.2015.28
https://doi.org/10.1109/EDOCW.2015.28
https://doi.org/10.1109/EDOCW.2015.28
https://doi.org/10.1007/978-3-031-16171-1_2
https://doi.org/10.1007/978-3-031-16171-1_2
https://doi.org/10.1007/978-3-031-16171-1_2
https://doi.org/10.1007/978-3-031-16171-1_2
https://doi.org/10.1007/978-3-031-16171-1_2
https://doi.org/10.1007/978-3-030-89811-3_7
https://doi.org/10.1007/978-3-030-89811-3_7
https://doi.org/10.1007/978-3-030-89811-3_7
https://doi.org/10.1007/978-3-030-89811-3_7
https://doi.org/10.1007/978-3-030-89811-3_7
https://doi.org/10.1109/TAI.2000.889888
https://doi.org/10.1109/TAI.2000.889888
https://doi.org/10.1109/TAI.2000.889888
https://doi.org/10.1109/TAI.2000.889888
https://doi.org/10.1147/SJ.462.0335
https://doi.org/10.1147/SJ.462.0335
https://doi.org/10.1147/sj.462.0335
https://doi.org/10.1016/J.CHB.2014.07.022
https://doi.org/10.1016/J.CHB.2014.07.022
https://doi.org/10.1016/j.chb.2014.07.022
https://doi.org/10.1016/j.chb.2014.07.022
https://doi.org/10.1080/10580530802384613
https://doi.org/10.1080/10580530802384613
https://doi.org/10.1080/10580530802384613
https://doi.org/10.1080/10580530802384613
https://doi.org/10.1080/10580530802384613

30. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring business
constraints with linear temporal logic: An approach based on colored automata. In: BPM.
LNCS, vol. 6896, pp. 132–147. Springer (2011)

31. Mannila, H., Ronkainen, P.: Similarity of event sequences. In: 4th International Workshop
on Temporal Representation and Reasoning, TIME ’97, Daytona Beach, Florida, USA, May
10-11, 1997. pp. 136–139. IEEE Computer Society (1997)

32. Montali,M.: The ConDec Language, pp. 47–75. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

33. Mulo, E., Zdun, U., Dustdar, S.: Monitoring web service event trails for business compliance.
In: IEEE International Conference on Service-Oriented Computing and Applications, SOCA
2009, 14-15 December 2009, Taipei, Taiwan. pp. 1–8. IEEE Computer Society (2009)

34. Polyvyanyy, A., Ouyang, C., Barros, A., van der Aalst, W.M.P.: Process querying: Enabling
business intelligence through query-based process analytics. Decis. Support Syst. 100, 41–56
(2017)

35. Ray, D., Ligatti, J.: A theory of gray security policies. In: Pernul, G., Ryan, P.Y.A., Weippl,
E.R. (eds.) Computer Security - ESORICS 2015 - 20th European Symposium on Research in
Computer Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part II. Lecture
Notes in Computer Science, vol. 9327, pp. 481–499. Springer (2015)

36. Tidjon, L.N., Frappier, M.,Mammar, A.: Intrusion detection systems: A cross-domain overview.
IEEE Commun. Surv. Tutorials 21(4), 3639–3681 (2019)

37. van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.P.: Online
conformance checking: relating event streams to process models using prefix-alignments. Int.
J. Data Sci. Anal. 8(3), 269–284 (2019)

18

