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Abstract. Business processes require continuous changes or interven-
tions to remain efficient and competitive. However, implementing such
changes (i.e., reordering tasks, adding new tasks or resources) is non-
trivial since they can negatively affect overall process performance. A
longstanding problem in Business Process Management is the challenge
of forecasting ex-ante the impact of changes on process performance
metrics such as total costs and resource utilization. To achieve this, the
concept of Digital Process Twins, which extends the well-established Dig-
ital Twin paradigm, paves the way for interesting opportunities. Digital
Process Twins enable what-if analysis to virtually predict process per-
formance after the implementation changes, allowing for optimization
before real-world application. However, despite recognition as one of the
new key enablers of modern process re-engineerization, a comprehensive
framework for implementing Digital Process Twins is still lacking. This
paper proposes a novel conceptual architecture for deploying Digital Pro-
cess Twins to address this gap. Additionally, we introduce Adaptive-
Twin, a framework that implements such conceptual architecture using
a multi-modeling approach combining domain data and process modeling
along with a data-driven process simulation technique.
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1 Introduction

Nowadays, organizations constantly strive to enhance and sustain the efficiency
and performance of their operational processes [13]. This necessity is fueled by
several factors, including the increasing competitiveness of the global market,
environmental shifts, variations in resource availability, emergent business op-
portunities, and the advent of new technologies [12]. A notable example of these
advancements is the emerging field of IoT-Enhanced Business Processes [7,8,28],
where IoT devices are increasingly being integrated into processes to optimize
further and automate business operations. However, for a long time, a problem
in the field of Business Process Management is that of what-if process analysis:
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predicting the values that one or more process performance measures will take
after a given business process change [4, 12].

A similar problem has been addressed for several decades in mechanical and
industrial engineering through the use of the Digital Twin paradigm. Digital
Twins are virtual replicas of real-world systems synchronized at specific inter-
vals and levels of detail. They accurately predict the performance and behavior
of their physical counterparts over time, offering valuable insights for optimiza-
tion and decision-making [15]. Initially adopted in the manufacturing sector to
virtually replicate, simulate, and predict the performance of physical machines,
the concept of Digital Twin is starting to be applied to organizational processes,
providing a new approach to re-engineering modern business processes [12, 15].
Gartner estimates that by 2026, 25% of global enterprises will move towards
creating Digital Twins for their business processes [17].

In light of this, the integration of Business Process Management practices
with the Digital Twin paradigm is being seen as a promising solution for helping
organizations manage process changes while maintaining resilience and control
over their operations [4, 12, 17]. Just as traditional Digital Twins replicate and
predict the performance of physical assets, Digital Process Twins offer analogous
capabilities for business processes. Implementing changes in business processes
typically involves significant time, resources and risk of failure, leading to high
expenses [13]. This integration facilitates what-if process analysis, allowing or-
ganizations to simulate potential changes and predict their impact on process
performance ex-ante in a virtual, safe, and risk-free environment [12, 20]. How-
ever, despite being recently recognized as a key enabler for digital transformation
in organizational processes [4,12,20], there is currently no detailed framework for
fully exploiting the opportunities that a Digital Process Twin can provide [12].

The contributions of this work are twofold. First, we propose a concep-
tual architecture for implementing Digital Process Twins. The proposed archi-
tecture employs heterogeneous digital models and Business Process Manage-
ment techniques to replicate the as-is process and reason about the perfor-
mance of a to-be process after virtually implementing a process change. On the
other hand, we present Adaptive-Twin, a tool that implements the proposed
Digital Process Twin’s conceptual architecture. Adaptive-Twin implements a
multi-modeling approach combining an IoT Domain Model formalized with the
MERODE methodology and the standard BPMN into a data-aware business
process modeling approach. It allows the simulation and virtual implementation
of potential changes in business processes, forecasting their impact on process
performance before real-world actuation.

The rest of the paper is organized as follows. Section 2 presents background
knowledge. Section 3 presents a conceptual architecture for implementing Dig-
ital Process Twins. Section 4 introduces the Adaptive-Twin tool support-
ing the Digital Process Twin conceptual architecture. Section 5 reports on the
Adaptive-Twin evaluation. Finally, Section 6 discusses related works, and Sec-
tion 7 summarizes and concludes the paper.
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2 Background

This section overviews the most relevant aspects of deploying the Digital Process
Twin. First, we introduce MERODE, a model-driven method used to support
the design of digital models for Digital Process Twin. Additionally, we discuss
the Business Process Simulation technique, which is fundamental for conduct-
ing “what-if” analyses and estimating the business processes performance after
implementing a change.

2.1 The MERODE Methodology

Adopting a Model-Driven Engineering approach in developing Digital Twins is
fundamental to fully leverage their potential [15, 19]. A noteworthy approach
within this domain is the MERODE methodology [26]. MERODE uses object-
oriented domain modeling to develop enterprise information systems, structuring
the design and implementation of intra-organizational enterprise information
systems into three distinct layers: the Domain layer, the Information System
Services layer, and the Business Process layer [26].

The Domain layer defines business objects, including their attributes and rela-
tionships. A business object represents a real-world entity relevant to a business
process, such as data, documents, people, events, or other elements participating
in a business process [13]. Examples of business objects could include Container
and Shipment, which can be instantiated to link a container with a specific
shipment. Additionally, a Sensor equipped on each container constantly mon-
itors and tracks data in real-time, providing comprehensive information about
the shipment’s status and conditions. The domain layer enables code genera-
tion from a conceptual model named “MERODE Domain Model”, facilitating
the transition to a functional prototype of the information system [25, 26]. The
MERODE Domain Model consists of three views: a Class Diagram, an Object
Event Table, and a set of Finite State Machines. The class diagram defines busi-
ness objects and their relationships, while the object event table maps event
types triggered by business objects. When an event fires, it triggers the exe-
cution of methods on business objects used to create, modify, or end business
object instances. Finite state machines specify the life cycles of business objects,
depicting object behavior triggered by events. A MERODE Domain model can
be modeled using the MERLIN Modeling Tool3, providing model consistency
and correctness assessment features.

The Information System Services layer acts as a bridge between business
objects and business processes. Input services update the business objects by
modifying their attributes or state, while output services provide access to data.

The Business Process layer sits above the Information System Services layer.
Its purpose is to facilitate interactions between processes and the Domain layer
via Information System Services, ensuring the update and exchange of informa-
tion with business objects.
3 https://www.merlin-academic.com/ - Accessed 8 July 2024
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2.2 Data-Driven Business Process Simulation

Traditional Business Process Simulations allow business experts to estimate the
performance of business processes under varying conditions and constraints [1].
To run a simulation, a Simulation Model is required. This model digitally repli-
cates real-world processes, including detailed mappings of process flows, activi-
ties, decision points, and resources. In addition, it necessitates a set of Simula-
tion Parameters that represent quantitative variables such as activity processing
times and costs used to ensure that the Simulation Model accurately reflects
real-world conditions [1, 23]. However, the manual creation and fine-tuning of
Business Simulation Models is an error-prone task, involving a complex set of
models and parameters defined and assessed manually by business experts. This
approach often leads to inaccurate models and requires significant time to iden-
tify the optimal scenario for desired performance outcomes [6, 11].

Data-driven process simulation offers a solution by leveraging real data to
discover accurate and enhanced simulation-ready models [6, 11]. Unlike tradi-
tional process simulations, which rely on manually gathered and interpreted
information, data-driven simulations utilize historical and real-time data from
event logs. Mining techniques based on past event logs of the process [6, 18] are
employed to ensure that simulation-ready models and parameters are reason-
able and aligned with reality [1]. Historical data provide retrospective insights
through process mining techniques, while real-time data enable continuous up-
dates to the simulation model, ensuring it accurately reflects the current state
of the process during the simulation [11].

Once the simulation model is configured, it is ready to be simulated, and
results can be interpreted. To this end, Key Performance Indicators (KPIs) are
crucial for evaluating the performance and effectiveness of business processes.
KPIs are values for measuring the effectiveness in achieving specific goals of
a business process [1]. They include metrics such as cycle time distribution,
waiting time distribution, cost distribution, and resource utilization, providing
benchmarks for evaluating overall process performance. By assessing the KPIs,
the what-if questions mentioned above can be answered, and different process
redesigns can be compared.

3 Conceptualizing Digital Twins

Implementing a Digital Twin infrastructure is a non-trivial task [15,21]. Despite
the emergence of various implementations from both research and practical ap-
plications [14, 21], no single solution can be considered a silver bullet for imple-
menting a full-fledged Digital Twin [15]. A Digital Twin environment typically
includes a collection of interconnected models and data that replicate a real-
world system [15]. It provides services, including design, development, analysis,
simulation, and optimization, enabling a thorough understanding and enhance-
ment of the replicated system’s performance [14,15].
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3.1 A Conceptual Architecture for Digital Twin

In [14], the authors explored various characterizations of the core elements of
Digital Twins. This effort was directed at providing a clearer understanding of
the foundational components of Digital Twins. They proposed a generic and con-
ceptual architecture for facilitating the systematic engineering of new domain-
independent Digital Twin applications. According to [14], a Digital Twin adheres
to a three-component architecture described as a three-element tuple:

ADT = ⟨Actual System,Models,Data⟩
Where the Actual System represent a real-world system or object; Models

provide digital representations of the Actual System; and Data represents current
and historical data of the Actual System, crucial for instantiating digital models.
The three main components of the framework are proposed as follows.

– The Actual System refers to the real-world system that the Digital Twin
aims to replicate. It involves collecting, storing, calculating, and inferring
data specific to the system. These activities are essential for the Digital
Twin to capture relevant aspects, features, and relationships of the Actual
System within its operational contexts and environments.

– The Data component is about storing and representing current and histor-
ical data from the Actual System. Data and information are important to
accurately provides information to models and reflect the actual system in
the digital space of the Digital Twin environment, enabling accurate and fair
analysis.

– The Models establish digital representations of the Actual System consid-
ering different perspectives. As stated by [14], it includes three types of mod-
els: descriptive, predictive, and prescriptive. Descriptive models capture and
organize data to accurately replicate the Actual System. Predictive models
support decision-making using aggregated data and insights from descriptive
models to anticipate future system behavior and conduct “what-if” analyses.
Finally, Prescriptive models incorporate insights from “what-if” analyses into
adaptive actions aimed at optimizing the Actual System.

3.2 A Conceptual Architecture for Digital Process Twin

Digital Process Twins have recently been acknowledged as crucial enablers for
digital transformation within organizational processes [4,12,20]. However, there
remains a lack of comprehensive implementations on effectively leveraging the
Digital Process Twins paradigm. In the following, we propose a conceptual archi-
tectural approach tailored for the engineering and deployment of Digital Process
Twins, drawing upon the conceptualization outlined in the previous Subsection.
Figure 1 depicts a visual representation of the proposed conceptual architecture.

The Actual System here refers to a business process, which consists of a
set of actions, events, and decisions that lead to creating a service or product
[13]. Typically, business processes involve several perspectives. Authors in [22]
categorize perspectives into six distinct types, which are described as follows.
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Fig. 1: The Conceptual Architecture for Digital Process Twin.

– Function Perspective: atomic activities representing specific business tasks
within the process.

– Behavior Perspective: dynamic behavior including control flow, activity
order, and constraints.

– Information Perspective: data used/generated in the process, organized
via domain models (class diagrams, finite state machines).

– Organization Perspective: roles of participants and organizational units,
ensuring proper task assignment.

– Operation Perspective: implementation details and integration with ap-
plication services, supporting business functions.

– Time Perspective: temporal constraints like deadlines and durations, en-
suring timely execution.

Process-Aware Information Systems (PAIS) integrate and manage these busi-
ness processes by incorporating the aforementioned perspectives, facilitating con-
trol, monitoring, and analysis [22]. The information generated by these systems
provide valuable information and data on various aspects of the process. These
systems generate valuable information, including historical data stored in event
logs and real-time data on ongoing process instances, which offer essential infor-
mation for creating a digital process replica.

The Data component entails collecting and storing process-relevant data di-
rectly from the process and the Process-Aware Information System. Data are
organized through Digital Shadows, which are abstracted and aggregated data
structures that provide a one-way data flow from the Actual System to its digital
representation [3, 20]. Information is transmitted to the Digital Shadow to es-
tablish a synchronous linkage between the Actual System and its corresponding
Digital Process Twin. Data is fundamental for two reasons: first, it instantiates
digital models that accurately replicate the Actual System; second, by populat-
ing these models, it enables detailed analyses that provide insights and drive
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improvements in the Actual System. The data flow, represented in Figure 1
by the “Monitoring/Mining” arrow, illustrates two methods of data collection:
real-time monitoring of ongoing business process instances and historical data
extraction using Process Mining techniques [2]. Real-time data includes infor-
mation about the current status of the process (i.e., resource usage, active tasks,
actual process KPIs). Historical data, including event logs of past process execu-
tions, organizational documents outlining procedures, and additional contextual
data, provides valuable information for Process Mining analyses [2].

Considering the Model component, descriptive models aim to create a digi-
tal replica of the process. It is obtained by combining a digital process model and
domain data models, offering multiple perspectives of the process. The digital
process model represents specific behaviors, functions, operations, organizational
and time perspectives of the process. For example, the process model can in-
clude a BPMN diagram that details the sequence of activities, control rules, and
interactions between process participants. The model of the process is obtained
by adopting process mining discovery algorithms [2], which analyze event logs
from the Process-Aware Information System to ensure the model is accurate
and reflects reality. In parallel, the domain data model manages the information
perspective, organizing and structuring data relevant to the process. This in-
cludes class diagrams and finite state machines that define the relationships and
states of business objects, ensuring data integrity and supporting the retrieval
of process-related information.

To conduct what-if analyses, a predictive model representing the digital
replica of the actual business process is employed. However, to implement and
test process changes, business experts must manually adjust the process struc-
ture (i.e., reordering tasks and adding new resources). For this reason, the digital
replica should be modified by (i) manually implementing the necessary changes
to the process model; (ii) discovering optimal Simulation Parameters using ex-
isting mining approaches on historical data [6,18]; (iii) leveraging real-time data
from a Domain Model [22]. This enables the creation of a data-driven process
simulation model, allowing for the virtual implementation of changes and the
estimation of the new process’s performance through simulation. Finally, sim-
ulation insights can be translated into the form of Prescriptive Models. They
consist of estimating KPIs and analyzing event logs to reason about the impact
of changes made to the process. These insights are translated into actions, eval-
uated by business experts, and, if beneficial, implemented in the actual business
process. To complete the feedback loop between the Digital Twin and the Actual
System, the “Actuating” arrow involves implementing and executing actions on
the Actual System based on prescriptive models. This approach helps reduce
costs, save time, and provide a risk-free environment for virtual testing.

4 Adaptive-Twin: Implementing Digital Process Twins

This section introduces Adaptive-Twin, a tool based on the Digital Process
Twin conceptual architecture proposed in Subsection 3.2 It adopts a multi-
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modeling approach, integrating domain data models formalized with the MERODE
methodology, the standard BPMN language for process modeling, and data-
driven simulation techniques for what-if process analysis. Figure 2 provides an
overview of Adaptive-Twin, highlighting its three key components: the Actual
System, Data, and Models.

Actual Business Process (P1)

Planning

Analysis
Planning

Generalizing

Data

Models

Digital Process Twin Environment

New!

ValueVariable

25%X

Predictive Model
- Process Simulation Model

BPMN (P1’)

ADAPTIVE-TWIN Framework

MiningActuating Monitoring

New!

Process-Aware
Information System

Digital Shadows
- Event Logs;
- Documents;
- Real-Time Data.

Descriptive Models
- MERODE Domain Model;
- Process Model BPMN (P1);
- Actual KPIs Estimation.

Prescriptive Models
- Simulation Reports;
- KPIs Estimation;
- Adaptation Settings.

Fig. 2: Adaptive-Twin: Tool Overview.

To create a digital copy of the Actual Process (P1), Adaptive-Twin
allows to leverage data from the Process-Aware Information System that im-
plements the actual business process. The Data extracted includes real-time
information from ongoing process instances via an embedded Camunda Engine,
as well as historical data obtained by uploading an event log representing pre-
vious process executions. The event log is used to discover the structure of the
actual BPMN process model (P1) through Process Mining techniques [2]. On
the other hand, Real-time data are used to instantiate the MERODE Domain
Model. In [27], the authors demonstrate how MERODE bridges the gap between
data and process modeling by linking these two domains formally. It allows to
handling of domain process data by continuously monitoring business objects’
status, relationships, actions, and actual process KPIs. This enables real-time
management of their data, providing current status information within the pro-
cess. Moreover, MERODE supports formal verification, reusability, and flexibil-
ity [26], creating descriptive models that accurately reflect business processes
from multiple perspectives.

Then, to evaluate the impact of potential process changes, a new BPMN
model (P1’ ) is derived by modifying the digital counterpart P1 of the actual pro-
cess. Unlike P1, the P1’ model necessitate additional features. First, it includes
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manual changes applied by business experts, implementing the desired changes
to the process. Additionally, to effectively run simulations, P1’ requires defining
simulation parameters. These parameters are discovered using SimuBridge [18],
which allows mining techniques to be performed on historical process data, en-
suring that simulations are based on real information. Furthermore, P1’ inte-
grates real-time data from the MERODE Domain Model, aligning domain data
with the current state of the ongoing process instance. This real-time data is
essential for maintaining the accuracy and relevance of the simulations. By sim-
ulating P1’, which acts as a predictive model, it is possible to conduct “what-if”
analysis within the Digital Process Twin, allowing for the evaluation of poten-
tial changes and providing valuable insights into their impact before real-world
implementation. To run simulations on BPMN models, Adaptive-Twin em-
bedded BIMP UI, a business process simulator. This integration allows users
to simulate business processes effectively, leveraging a user-friendly interface to
visualize, analyze, and download simulation results.

Business experts then evaluate the impact of the changes on process perfor-
mance by carefully analyzing the results of the simulations. If the performance
improves or remains unchanged, the changes suggested by the prescriptive mod-
els can be considered for implementation. If performance does not improve, P1’
is revised and tested again. This iterative approach enables continuous process
adjustments based on real-time data, simulation feedback, and desired process
changes.

5 Adaptive-Twin: Evaluation on a Smart Harbor

This section presents a real-world implementation of Adaptive-Twin in a smart
harbor scenario. The objective is to evaluate the tool’s capabilities. A smart har-
bor represents a technologically advanced port that leverages innovative tech-
nologies and data-driven solutions to enhance operational efficiency [24]. This
scenario focuses on an IoT-enabled business process that represents modern pro-
cesses designed for automation through IoT integration. While smart harbors
encompass various processes, we will focus on container dispatching.

5.1 The Container Dispatch Business Process

Context. The process starts with the arrival of a cargo container at the har-
bor and ends when it is loaded onto a cargo ship, indicating that it’s ready for
shipment. The containers involved in dispatching are equipped with IoT devices
(i.e., RFID sensors) to track their status during the dispatching. When contain-
ers reach the harbor, their information (i.e., IoT data and shipping documents)
is recorded in the system and transmitted to the Storage Area. Then, it is re-
located to the Control Area for quality inspection. Quality control is conducted
by cross-referencing the container’s arrival data with the information gathered
during manual quality inspection. If the container fails the quality test, a man-
ual inspection is conducted to address potential quality issues, and the container
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is then returned to the Storage Area. Once quality problems are resolved, the
container is moved to the Shipping Area and loaded onto the cargo ship.
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(a) Discovered Actual Business Process (P1 ).
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 System Registration: 5 mins – Fixed 
 Solving Quality Problems: 1 hour - Fixed 

Scenario Specification: 
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Instances Arrival Time: 1 Container/hr 
Work schedules: 24/7 

(b) Mined Simulation Parameters.
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(c) Adapted Scenario Implementing Changes (P1’ ).

Fig. 3: Simulation Parameters and Models of the Container Dispatch Process.

Process Data. The event logs were generated considering two primary data
sources: (i) logs from the smart harbor system, which contains the sequences of
activities performed for each process instance and trace attributes, and (ii) IoT
sensor data, which tracks the arrival and quality of the containers considering
temperature and humidity. The process event logs were generated using CDLG
[16], a tool specifically designed to create synthetic event logs integrating concept
drifts and noise, such as missing event data. Event logs are based on patterns and
data observed in real-life operations from the Tuscan Port Community System4.
The event log comprises 7 activities, 3 resources, 33,910 events related to 5000
cases, and 67 execution paths (process variants).

5.2 Use Case Instantiation

Actual Business Process. As a first step, we discovered the actual business
process P1 from the event log using a process mining algorithm, applying a
threshold to reduce noise. The process structure has been slightly adapted to

4 https://tpcs.tpcs.eu/ - Accessed 8 July 2024

https://tpcs.tpcs.eu/
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better align with real-world operations. Figure 3a depicts the process model dis-
covered (P1 ). Automated tasks are designated as service tasks, while the manual
task of resolving quality problems is identified as a manual task. Additionally,
a data object has been incorporated to represent IoT data utilized during con-
tainer registration and quality check activities. The initial container registration
in the system involves capturing this IoT data, which is crucial for subsequent
quality assessments. Analysis of the structure of the event log and the derived
process is provided through a python notebook5.

MERODE Domain Model. In [9], we utilized a MERODE Domain Model
to develop a Digital Twin for manufacturing applications. Building on this, we
have extended and implemented the domain model within Adaptive-Twin to
generate Prescriptive Models for implementing Digital Process Twins.

After discovering the actual process, the MERODE Domain Model is instan-
tiated and mapped to the business objects participating. For example, creating
instances of the Device class allows real-time retrieval of data, status, and ac-
tions from physical devices. These digital models, formed by class diagrams,
finite state machines and object event tables, are dynamically synchronized with
business objects at the business process level, capturing both real-time and his-
torical data. Each business object is “tracked” by these models, and every action
it performs is updated both in the process and in the domain model instances.
This ensures that both real-time and past data produced by business objects
can be retrieved for analysis. A representation of the MERODE Domain Model
is shown in Figure 4. Further details on the specification and instantiation of the
MERODE IoT Domain Model are available online 6.

Data-Driven Process Simulation. At this stage, we assumed the involve-
ment of business experts to introduce changes to the actual process. For this
use case, we address the question: How can we modify the process to reduce total
costs and cycle time while maintaining the same operational efficiency?

Using bpmn.io, a BPMN modeler embedded in Adaptive-Twin, changes
were manually applied to the digital process replica (P1 ), resulting in an adapted
version, P1’. This adaptation aimed to simplify the workflow, reduce costs, and
shorten the process cycle time. In P1’, the container is moved to the Control
Area only if it fails the quality check, eliminating unnecessary movements. Figure
3c depicts the adapted version of the process P1’.

The event log was then used to discover the optimal simulation parameters for
the process simulation model P1’ using SimuBridge [18]. SimuBridge integrates
components such as control flow, activity duration, and resource utilization by
analyzing a .xes event log file. It leverages the Simod mining algorithm [6], which
enhances accuracy to derive models and simulation parameters from event logs.
The simulation parameters mined are as follows: Worker 1 handles container sys-
tem registration and quality checks, earning €20 per hour; Worker 2 manages

5 https://dub.sh/BPDiscovery-ipynb
6 https://github.com/IvanComp/ADAPTIVE-TWIN/blob/main/README.md

https://dub.sh/BPDiscovery-ipynb
https://github.com/IvanComp/ADAPTIVE-TWIN/blob/main/README.md
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Fig. 4: MERODE Domain Model Instantiation.

container movements, earning €30 per hour; Worker 3 performs manual quality
inspections, earning €25 per hour. Figure 3b shows these parameters, with each
task differentiated by shapes and colors based on the resource associated. For
all workers, a 24/7 working timetable was considered. Activities have varying
durations: the container quality check takes 1 hour while recording and checking
container data in the system takes 5 minutes. To better reflect reality, container
movements follow a uniform time distribution, varying between 25 and 35 min-
utes. Containers have an 84% chance of passing the quality test, as required
by the XOR gateway for outgoing sequence flows (84% OK, 16% NOT OK).
Additionally, a fixed distribution time is assigned to each instance’s arrival.

Finally, we simulated P1’ using BIMP UI, a scalable and fast BPMN simula-
tor and compared the KPIs derived from P1 and P1’. As motivated by the Digital
Process Twin architecture, we employed a hybrid approach integrating mined op-
timal simulation parameters, real-time data from the MERODE Domain Model,
and manual changes to the actual process P1. This method continuously updates
and reflects the process model, resulting in a data-driven simulation model P1’.

Legend: ↓ Reduction, ↑ Increase. — Hrs: Hours, Wks: Weekends.

KPIs
Original Scenario (P1) Adapted Scenario (P1’)

Min. Max. Avg. Total Min. Max. Avg. Total

Cycle Time Distr. 3.7 Hrs 15.6 Hrs 11.7 Hrs 12.6 Wks 1.5 Hrs ↓ 9.2 Hrs ↓ 5 Hrs ↓ 12.4 Wks ↓

Cost Distr. € 68.20 € 110.40 € 80.10 € 40,054.20 € 40.40 ↓ € 93.70 ↓ € 53.50↓ € 26,767.50 ↓

Worker 1 Worker 2 Worker 3 Total Worker 1 Worker 2 Worker 3 Total

Resource Utiliz. 58.75% 2.00% 3.44% 64.19% 37.54% ↓ 1.98% ↓ 3.92% ↑ 43.44% ↓

Table 1: KPIs of the Simulation for P1 and P1’.
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Results Evaluation. Table 1 presents the KPIs for P1 and P1’. The KPIs
are categorized into cycle time distribution, cost distribution, and resource uti-
lization. In terms of cycle time distribution, P1’ shows significant improvements
with reduced minimum, maximum, and average cycle times, indicating a more
efficient process. Regarding cost distribution, P1’ demonstrates cost savings,
showing lower minimum, maximum, and average costs, and a significantly re-
duced total cost, indicating better time efficiency and cost-effectiveness. In re-
source utilization, P1’ shows mixed results. Workers 1 and 2 have significantly
improved utilization, while Worker 3’s workload increases. A graphical compar-
ison between the KPIs values of P1 and P1’ is shown in Figure 5 and available
online7. The P1 and P1’ versions of the simulation models, the SimuBridge
project file and the simulation results are available online.8. The Adaptive-
Twin source code and instructions for running the tool are available online9.
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Fig. 5: Comparison of the KPIs for P1 and P1’.

6 Related Work

The concept of Digital Twin has been extensively explored across various do-
mains and purposes [15, 19]. Significant research has focused on implementing
Digital Twins in industrial sectors, particularly in replicating and simulating
machines and devices used in manufacturing processes [3, 19,21].

Despite the growing interest, only a limited number of research works focus on
implementing Digital Process Twins. For instance, [29] proposes a micro-service
architecture to integrate physical IoT entities into IoT-Enhanced Business Pro-
cesses. This approach uses a model-driven development method that combines
BPMN models and Digital Twins Definition Language models via Java micro-
services, allowing IoT virtual replicas to be integrated into real-world processes.

7 https://bit.ly/Adaptive-Twin_DataResults_ipynb
8 https://zenodo.org/records/12671621
9 https://github.com/IvanComp/Adaptive-Twin

https://bit.ly/Adaptive-Twin_DataResults_ipynb
https://zenodo.org/records/12671621
https://github.com/IvanComp/Adaptive-Twin
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However, it lacks capabilities for continuous optimization and adaptation of IoT-
Enhanced Business Processes. Similarly, PROWIN [10] is a framework designed
for monitoring and executing IoT-Enhanced Business Processes in a multi-robot
scenario. It uses the Gazebo Simulator for 3D visualization of the operating
scenario and the process’s evolution, offering a detailed view of the system’s ex-
ecution. Nonetheless, it does not address the specifics of the software infrastruc-
ture needed for maintaining runtime synchronization with the real world. In [5],
authors present a framework for managing IoT-Enhanced Business Processes.
This solution extends the BPMN standard and integrates models for analysis,
featuring a model-to-text transformation engine, an interaction broker for IoT
infrastructure, a simulation engine, and a business process engine. However, it
lacks detailed real-time communication with physical counterparts.

This work advances the state of the art by proposing a novel conceptual
architecture for deploying Digital Process Twins. It outlines a systematic proce-
dure for creating, managing, and simulating digital replicas of business processes
to assess potential changes before real-world implementation. Additionally, we
introduce Adaptive-Twin, a tool that implements this Digital Process Twin
conceptual architecture.

7 Conclusion

This paper introduces a novel architecture for deploying Digital Process Twins
aimed at enhancing resilient process changes and supporting informed decision-
making through predictive insights derived from data-driven process simulations.
The architecture integrates heterogeneous digital models (e.g., descriptive, pre-
dictive, and prescriptive) to design, synchronize, and simulate a high-fidelity
digital replica of business processes, leveraging data extracted from real-time
monitoring and process mining analysis.

The architecture promotes a feedback loop mechanism that utilizes data-
driven process simulation on the process replica to continuously assess the po-
tential impacts of desired process changes. If process performance improves or
remains stable, these changes are considered to be actuated by business experts
in the real-world process. Moreover, conducting tests on digital replicas enables
secure, risk-free evaluation of changes, thereby reducing deployment costs and ac-
celerating process updates. The approach was evaluated using Adaptive-Twin,
a tool implementing the proposed Digital Process Twins architecture in the con-
text of a container dispatching process, revealing significant improvements.

In future research, we aim to improve further Adaptive-Twin, currently in
its prototype stage, focusing on performance in high data volume environments,
such as typical IoT settings. We also plan to test Adaptive-Twin in more
complex and larger-scale scenarios for more accurate and realistic evaluation.
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