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Abstract The state-of-the-art approach for computing alignments is to
apply an exhaustive state-space search with a well-tailored A*-heuristic
function. If the heuristic fails to provide good estimates, the alignment
computation quickly becomes infeasible even for small event logs given
the exponential search space. Since intractability is unavoidable for gen-
eral process models, we here consider the restricted class of process trees
which provides a good balance between expressiveness and algorithmic
feasibility. As our main result, we prove that alignments on process trees
can be expressed as solutions of Mixed Integer Linear Programs (MILP).
Our novel approach does not only position the problem inside the class
of NP, but also paves the way for applying a host of new optimization
techniques from the field of mathematical programming to alignments on
process trees. We further show that for process trees without parallel ex-
ecutions, our MILP formulation becomes a Linear Program (LP) which
can be solved efficiently. This result gives fresh insights into the structure
of the alignment problem and the role of parallelism as a key factor for
intractability. Finally, we implement our new algorithmic approach in
PM4Py and evaluate the performance against the standard algorithms.

Keywords: Process Mining · Conformance Checking · Alignments · Pro-
cess Trees · Mixed Integer Linear Programming

1 Introduction

Constructing optimal alignments between a trace and a process model is a key
task in conformance checking. The standard approach is to formulate the align-
ment computation as a reachability problem on the product of the model and
the trace. In general, this product is of exponential size which leads to high
computational costs and hinders scalability of alignment computations. This, in
turn, poses a major obstacle for practical applications where massive event logs
and business models have to be analyzed.

Unfortunately, computing alignments on sound workflow nets (the standard
modeling notation in process mining) is a PSPACE-complete problem. While
this might seem discouraging, we rather see it as a call for a more intensive root-
cause analysis of the algorithmic complexity of alignments. In fact, we are going
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to show that one can derive much better bounds if certain syntactic restrictions
are imposed on the process models. This goes in line with the observation that,
in practice, process models often provide such extra structure that we can exploit
to speed up alignment computations.

In this paper, we focus on the important example of process trees, a class of
models that can be decomposed into subprocesses which are interconnected in a
tree-like fashion. Process trees are highly relevant in practice and form the basis
for one of the most popular family of mining algorithms, the so-called Inductive
Miner [13]. Our key observation is that process trees have optimal alignments of
linear length (linear in the size of the trace plus the size of the process tree). This
allows us to solve the alignment problem on process trees in NP (rather than
PSPACE). As our central contribution, we give the first Mixed Integer Linear
Programming (MILP) formulation of the alignment problem on process trees.

More specifically, we encode the alignment problem as a minimal-cost net-
work flow problem. This network flow construction can then, in a second step,
be readily expressed as a MILP instance. For the former translation, the diffi-
cult part is to express the parallel operator in a process tree as a flow gateway
in a network graph. The parallel operator models independent concurrent com-
putations and is the root cause for the exponential state explosion that we get
from a translation of process trees to standard transition systems (aka. finite
automata). It should be noted that the parallel operator can be expressed suc-
cinctly using Petri nets, but it is unclear, how we could get an efficient MILP
formulation from this presentation. Intuitively, we model the parallel operator
by splitting up a flow into equal parts and send those subflows through different
parts of the network. When all subflows have reached their respective ends, we
merge the subflows again, to gain back the original flow. It turns out that for
this synchronized split and merge we need to use integer variables. In fact, this
will be the only part where discrete variables are required. As a consequence,
for process trees without the parallel operator, our MILP instance becomes a
Linear Program (LP) which can be solved in polynomial time.

To complement our MILP formulation, we also provide a proof-of-concept im-
plementation based on the PM4Py ecosystem [3] and the Gurobi Optimizer [12].
We further evaluate the performance of our MILP approach on a set of synthetic
and real-life benchmark logs in comparison with the state-of-the-art alignment
algorithms based on A* and the reachability approach. Our experiments show
that the MILP-based approach is extremely promising and outperforms the two
other alignments algorithms for process trees which are available in PM4Py.

2 Related Work

Alignments were introduced by [1] and are now the state-of-the-art technique
for conformance checking [8]. In particular, they have surpassed token-based re-
play [17] in terms of accuracy and flexibility. Due to the high computational
costs of the textbook algorithm based on A∗, several techniques have been stud-
ied to improve scalability, e.g., see [4, 14]. This also includes techniques from
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mathematical optimization. Most notably, [11] uses Linear Programming (LP)
to improve A∗-heuristics and to reduce the runtime significantly. Furthermore,
approximative algorithms have been proposed, e.g., see [19] for a scheme based on
Mixed Integer Linear Programming (MILP). However, until today, no full MILP
encoding of the alignment problem has been studied. The only work that some-
what goes into this direction is [5, 6]. There, the authors showed that computing
alignments is in NP if the length of optimal alignments is polynomially bounded.
Since it can be shown that this holds for process trees and since NP problems can
be encoded into MILPs, this result implies the existence of a MILP-encoding.
However, the authors did neither provide a MILP-formulation nor any concrete
example of an interesting model class with this property.

The notion of process trees is inspired by the observation that many real-life
process models can be decomposed into distinct blocks that are interconnected
in a tree-like fashion. This allows divide-and-conquer strategies for solving al-
gorithmic problems. Process trees were first applied by [7, 20] in the context of
genetic process discovery. Since then, process trees have proven to be a model-
ing language with a great balance between expressiveness and algorithmic sim-
plicity. In particular, they form the basis of one of the most popular process
discovery algorithms, the so-called Inductive Miner [13]. Thus, it comes at no
surprise that also optimized algorithms for alignment computations on process
trees have been studied. Most notably, [18] proposed an approximation algo-
rithm which performs well on many process trees, but which does not guarantee
to compute optimal alignments in all cases. This is in stark contrast with our
MILP encoding approach which always yields optimal solutions.

Finally, we like to mention work on the error correction problem for regular
languages. Here, the goal is to compute edit distances between an input string
and a regular expression. This is very intimately related to computing optimal
alignments. In essence, process trees correspond to regular expressions extended
by the shuffle operator and for those languages it was shown a long time ago that
deciding membership (i.e., edit distance 0) is NP-complete, e.g., see [16]. Since
the membership problem is a special case of the alignment problem (where the
costs of an optimal alignment are 0), our MILP encoding in this work can also
be used as an error-correction algorithm for regular expressions with shuffle.

3 Preliminaries

Let N be the set of natural numbers excluding 0. For any tuple a, πi(a) denotes
the projection on its ith element, i.e., πi : A1×· · ·×An → Ai, (a1, . . . , an) 7→ ai.
For any node v in a graph, let δ−(v) (δ+(v)) denote the set of incoming (outgoing)
arcs at node v.

Definition 1 (Alphabet). An alphabet Σ is a finite, non-empty set of labels
(also referred to as activities).

Definition 2 (Sequence). Sequences with index set I over a set A are denoted
by σ = ⟨ai⟩i∈I ∈ AI . The length of a sequence σ is written as |σ| and the set of
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all finite sequences over A is denoted by A∗. For a sequence σ = ⟨ai⟩i∈I ∈ AI ,∑
σ is a shorthand for

∑
i∈I ai. The restriction of a sequence σ ∈ A∗ to a set

B ⊆ A is the subsequence σ|B of σ consisting of all elements in B. A function
f : A → B can be applied to a sequence σ ∈ A∗ given the recursive definition
f(⟨⟩) := ⟨⟩ and f(⟨a⟩ · σ) := ⟨f(a)⟩ · f(σ). For a sequence of tuples σ ∈ (An)∗,
π∗
i (σ) denotes the sequence of every ith element of its tuples, i.e., π∗

i (⟨⟩) := ⟨⟩
and π∗

i (⟨(a1, . . . , an)⟩ · σ) := ⟨πi(a1, . . . , an)⟩ · π∗
i (σ) = ⟨ai⟩ · π∗

i (σ).

Definition 3 (Shuffle �). For two sequences x, y ∈ Σ∗, the shuffle x� y of x
and y is defined as

x� y := {v1w1 · · · vkwk | x = v1 · · · vk, y = w1 · · ·wk, vi, wi ∈ Σ∗, 1 ≤ i ≤ k}.

Let L1,L2 ⊆ Σ∗ be two languages. Then the shuffle of the two languages is
defined as

L1 � L2 :=
⋃

{w1 � w2 | w1 ∈ L1, w2 ∈ L2}.

Definition 4 (Transition System). A transition system TS is a tuple TS =
(S,Σ, T, sinit , sfinal) where S is the set of states, Σ is the set of activities, T ⊆
S × Σ × S is the set of transitions, and sinit , sfinal ∈ S are two distinguished
states, namely the initial state sinit and the final state sfinal .

Definition 5 (Process Trees). Let Σ be an alphabet of activities and let τ /∈ Σ
be the silent activity. A process tree is defined recursively where
– each activity a ∈ Σ and the silent activity τ is a process tree,
– →(PT1, . . . , PTn), ×(PT1, . . . , PTn), ⟲(PT1, PT2), and ∧(PT1, . . . , PTn) are

process trees with PT1, . . . , PTn, n ∈ N being process trees as well.
The symbols → (sequence), × (exclusive choice), ⟲ (loop), and ∧ (parallel) are
process tree operators. The language of a process tree PT is denoted by L(PT )
and is also recursively defined where
– L(τ) = {⟨⟩} and L(a) = {⟨a⟩},
– L(→(PT1, . . . , PTn)) = L(PT1) · · · · · L(PTn),
– L(×(PT1, . . . , PTn)) = L(PT1) ∪ · · · ∪ L(PTn),
– L(⟲(PT1, PT2)) = L(PT1) · (L(PT2) · L(PT1))

∗, and
– L(∧(PT1, . . . , PTn)) = L(PT1)� · · ·� L(PTn).

The τ -language Lτ (PT ) of a process tree PT preserves silent activities and is
defined accordingly, but with Lτ (τ) = {⟨τ⟩} instead. A sequence x ∈ Lτ (PT ) is
also referred to as an execution of the process tree PT .

4 Computing Alignments on Process Trees

Alignments [1] juxtapose observed and modeled behavior. Thereby, activities in
the observed trace are compared in pairs with activities from an execution of
the process tree. These pairs are called moves and they are considered legal if
the observed activity matches the activity from the process tree execution or the
pair consists of just one activity, either from the observation or the model, while
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its counterpart is considered to have not yet proceeded, indicated by a special
“no move” symbol ≫.

γ1 =
b a c ≫
≫ a c b

γ2 =
≫ b a c

τ b ≫ c

Let γ1 and γ2 be two exemplary alignments between an observed trace ⟨b, a, c⟩
and a process tree →(×(a, τ),∧(b, c)). The top row indicates the progress in
the trace, while the bottom row contains the labels executed in the process
tree. In γ1, the second and third move show that the observed activities could
be synchronized with the execution of the process tree; hence, they are called
synchronous moves. While the first move (b,≫) indicates that the observed
activity b was not performed in the model, the fourth move (≫, b) indicates the
reverse, namely that activity b executed by the process tree could not be matched
with an activity in the trace. A move only proceeding on the trace is called log
move and a move only proceeding on the model is called model move. The model
move (≫, τ) in γ2 is special as the silent activity τ cannot be observed. Such
moves are therefore not considered as deviations and also called silent moves.

Definition 6 (Legal Move, Alignment). Let Σ be an alphabet of activities, let
τ /∈ Σ be the silent activity, let σ ∈ Σ∗ be a trace, let PT be a process tree,
and let ≫ /∈ Σ be a distinguished “no move” symbol. Without loss of generality,
we assume the trace σ and the process tree PT being defined over the same
alphabet Σ. A move is an ordered pair (a, t) ∈ (Σ ∪ {≫}) × (Σ ∪ {τ,≫}) and
we distinguish three types of legal moves: The move (a, t) is a
– synchronous move if a, t ∈ Σ and a = t,
– log move if a ∈ Σ and t = ≫,
– model move if a = ≫ and t ∈ Σ ∪ {τ}.

A model move (≫, τ) is also called silent move. All other moves are considered to
be illegal. The set LM denotes all legal moves between alphabet Σ and process
tree PT , i.e., LM := {(a, a) | a ∈ Σ}∪(Σ×{≫})∪({≫}×(Σ∪{τ})). A sequence
of legal moves γ ∈ LM ∗ is an alignment between trace σ and process tree PT
if and only if σ = π∗

1(γ)|Σ and π∗
2(γ)|Σ∪{τ} ∈ Lτ (PT ). The set Γσ denotes all

alignments between a trace σ ∈ Σ∗ and process tree PT .

Looking at the two alignments γ1 and γ2 from above, we see that there
are multiple ways to align observed and modeled behavior. In general, we are
interested in an optimal alignment, i.e., an alignment that fits a trace to the
closest execution of the process model and only consists of inevitable deviations.
Therefore, deviations are associated with costs so that minimizing the costs leads
to an alignment where the synchronization between trace and model is maximal.
Formally, this is achieved via a cost function that assigns costs to moves and then
finding an alignment with minimal costs.

Definition 7 (Optimal Alignment). Let LM be the set of all legal moves and Γσ

be the set of all alignments between a trace σ ∈ Σ∗ and a process tree PT and
let c : LM → Q≥0 be a cost function. An alignment γopt ∈ Γσ is optimal if and
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only if no other alignment between σ and PT has lower costs, i.e.,
∑

c(γopt) =
minγ∈Γσ

{∑ c(γ)}.
Note that, in principle, for the approach presented in this paper, any func-

tion c : LM → Q≥0 can be chosen as a cost function. For better comprehen-
sibility, however, the standard cost function is assumed in the following where
synchronous or silent moves have no costs and log or non-silent model moves are
associated with costs of 1.

4.1 Alignments Based on Transition Systems

The standard approach to find optimal alignments is to solve a shortest path
problem in the synchronous product between the trace and the model. We now
give a translation of process trees into equivalent transition systems (where equiv-
alent means, that the traces generated by the process tree and the transition
system are the same). The translation is a relatively straightforward textbook
translation of a process tree into a finite automaton except for the parallel oper-
ator (note that process trees without concurrency correspond to regular expres-
sions). For the parallel operator we need to extend the standard construction,
since transition systems have no means to express concurrency. Typically, this
obstacle is circumvented by using Petri nets and transform those into equivalent
transition systems in a second step. In this paper, we skip the detour through
Petri nets and directly translate process trees into equivalent transitions systems.

But before, let us sketch the construction of the synchronous product between
the trace and the model. We start off from a standard direct product of two
transition systems, i.e., we take as state space all pairs consisting of states of
the trace and states of the model (the trace can easily be encoded as a labeled
directed path). We then extend both components by a new idle transition ≫
which is always active and does not alter the current state (i.e., a self-loop on
every state with label ≫). For the product, we allow transition pairs where either
both (original) transitions have the same activity label or where precisely one of
them is the idle transition. Note that the resulting transitions in the synchronous
product are the legal moves which we defined above (for details see [1, 21]).

Definition 8 (Transition System of a Process Tree). Let PT be a process tree.
The transition system of PT is denoted by TS(PT ) := (S,Σ∪{τ}, T, sinit , sfinal)
and can be constructed recursively by starting with the initial and final state
sinit , sfinal ∈ S and
– if PT = τ , adding a transition (sinit , τ, sfinal),
– for each activity a ∈ Σ, if PT = a, adding a transition (sinit , a, sfinal),
– for process trees PT1, . . . , PTn (with pairwise disjoint state spaces), n ∈ N,

• if PT = →(PT1, . . . , PTn), adding new states s1, . . . , sn−1 and inserting
TS(PTi) with initial state si−1 and final state si for 1 ≤ i ≤ n where
s0 = sinit and sn = sfinal ,

• if PT = ×(PT1, . . . , PTn), we take all TS(PTi), for 1 ≤ i ≤ n, as
independent subsystems and then merge all initial states to the initial
state sinit and all final states to the final state sfinal ,
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Table 1: Comparison between the construction of a transition system TS(PT )
and a process tree network N (PT ) based on a process tree PT .
Process Tree PT Construction of TS(PT ) Construction of N (PT )

a a
a
1
κ

τ τ
τ
1
κ

→(PT1, . . . , PTn) TS(PT1) TS(PTn)
. . .

N (PT1) N (PTn)
. . .

×(PT1, . . . , PTn)
TS(PT1)

TS(PTn)

...

N (PT1)

N (PTn)

...

⟲(PT1, PT2)
TS(PT1)

TS(PT2)

τ τ N (PT1)

N (PT2)

τ
1
κ

τ
1
κ

∧(PT1, . . . , PTn)

×

×

×
...

TS(PT1)

TS(PT2)

TS(PT2)

τ
1
κ

τ
1
κ

N (PT1)

N (PTn)

τ
1
nκ

τ
1
nκ

τ
1
nκ

τ
1
nκ

...

• if PT = ⟲(PT1, PT2), adding new states s1 and s2, transitions (sinit , τ, s1)
and (s2, τ, sfinal), and inserting TS(PT1) with initial state s1 and final
state s2 and inserting TS(PT2) with initial state s2 and final state s1,

• if PT = ∧(PT1, . . . , PTn), we take TS(PT ) to be the direct product of
the transition systems TS(PTi), 1 ≤ i ≤ n, where we declare the state
(s1, . . . , sn), where si is the initial state of TS(PTi), to be the initial
state sinit of TS(PT ) and, analogously, (s′1, . . . , s′n), where s′i is the final
state of TS(PTi), to be the final state sfinal of TS(PT ).

The construction of a transition system from a process tree is also illustrated
in Table 1. For any process tree PT it can be easily verified that L(PT ) =
L(TS(PT )). Here, the language L(TS) of a transition system TS consists of all
label sequences of paths from the initial to the final state. Figure 1a shows the
transition system of the exemplary process tree →(×(a, τ),∧(b, c)). For better
recognizability, the initial state is marked in green and the final state in red.
A trace σ ∈ Σ∗ is expressed by a directed path TSσ, which consists of |σ| + 1
states and where each event in the trace is associated with a transition, i.e.,
TSσ = ({si | 0 ≤ i ≤ |σ|}, Σ, {(si−1, πi(σ), si) | 1 ≤ i ≤ |σ|}, s0, s|σ|).

Now, to obtain an optimal alignment between a trace and a process tree, we
construct the synchronous product of their transition systems [cf. 1].

Definition 9 (Synchronous product). Let TS1 and TS2 be two transition sys-
tems. Their synchronous product is denoted by TS1⊗TS2 and defined according
to [21, Definition 8.6] where we restrict the resulting transitions to those where
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a

τ

b

c

c

b

(a) Transition system TS(PT ).

a
1

τ
1

b
1/2

c
1/2

τ
1

τ
1/2
τ

1/2

τ
1/2
τ
1/2

τ
1

(b) Process tree network N (PT ).

(b,≫) (b,≫) (b,≫)(b,≫)
(b,≫)

(a,≫) (a,≫) (a,≫)(a,≫)
(a,≫)

(c,≫) (c,≫) (c,≫)(c,≫)
(c,≫)

(≫, a)

(≫, τ)

(≫, b)

(≫, c)

(≫, c)

(≫, b)

(≫, a)

(≫, τ)

(≫, b)

(≫, c)

(≫, c)

(≫, b)

(≫, a)

(≫, τ)

(≫, b)

(≫, c)

(≫, c)

(≫, b)

(≫, a)

(≫, τ)

(≫, b)

(≫, c)

(≫, c)

(≫, b)

(b, b) (b, b)

(a, a)

(c, c)

(c, c)

(c) Synchronous product of tran-
sition systems TSσ and TS(PT ).

(b,≫
)

1

(b,≫
)

1

(b,≫
)

1

(b,≫
)

1/2

(b,≫
)

1
/2

(b,≫
)

1/
2

(b,≫
)

1/2

(a
,≫

)

1

(a
,≫

)

1

(a
,≫

)

1

(a
,≫

)

1/2

(a
,≫

)

1
/2

(a
,≫

)

1/
2

(a
,≫

)

1/2

(c,≫
)

1

(c,≫
)

1

(c,≫
)

1

(c,≫
)

1/2

(c,≫
)

1
/2

(c,≫
)

1/
2

(c,≫
)

1/2

(≫, a)

1

(≫, τ)

1

(≫, b)

1/2

(≫, c)

1/2

(≫, τ)

1

(≫, τ)

1/2(≫, τ)1/2

(≫, τ)1/2

(≫, τ)

1/2

(≫, τ)

1

(≫, a)

1

(≫, τ)

1

(≫, b)

1/2

(≫, c)

1/2

(≫, τ)

1

(≫, τ)

1/2(≫, τ)1/2

(≫, τ)1/2

(≫, τ)

1/2

(≫, τ)

1

(≫, a)

1

(≫, τ)

1

(≫, b)

1/2

(≫, c)

1/2

(≫, τ)

1

(≫, τ)

1/2(≫, τ)1/2

(≫, τ)1/2

(≫, τ)

1/2

(≫, τ)

1

(≫, a)

1

(≫, τ)

1

(≫, b)

1/2

(≫, c)

1/2

(≫, τ)

1

(≫, τ)

1/2(≫, τ)1/2

(≫, τ)1/2

(≫, τ)

1/2

(≫, τ)

1

(b, b)1/2

(a, a)
1

(c, c)1/2

(d) Synchronous network N (σ, PT ).

Figure 1: Comparison between the transition system and the process tree net-
work of PT = →(×(a, τ),∧(b, c)) and between the transition system of the
synchronous product with trace σ = ⟨b, a, c⟩ and the corresponding synchronous
network. Transitions representing synchronous moves and synchronous arcs, re-
spectively, are highlighted in green, synchronization nodes and arcs in blue.

either both original transitions have the same activity or one of them is idle
(denoted by ≫). The initial and final state of the synchronous product are the
states that are compositions of the original initial or final states, respectively.

Figure 1c shows the synchronous product of the transition systems of the
trace ⟨b, a, c⟩ and that of the process tree →(×(a, τ),∧(b, c)). It can be seen
that the activities of the resulting transitions correspond to legal moves where
synchronous moves were highlighted in green. Thus, each path from the initial
to the final state of the synchronous product corresponds to an alignment. If
each arc is weighted with the cost function according to the move it represents,
an optimal alignment is found via a shortest path. Alignment γ2 from above
represents the shortest path in the synchronous product and is therefore optimal.

We can also solve an optimization problem to find a shortest path from the
initial state to the final state. Let xt ∈ {0, 1} be a binary decision variable
indicating whether a transition t ∈ T is part of the shortest path (xt = 1) or
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not (xt = 0). To obtain a valid path from the initial state to the final state, we
do not only have to ensure that it originates in the initial state and terminates
in the final state, but also that it is not interrupted in any other state. This can
be achieved by requiring the number of incoming transitions δ−(s) and outgoing
transitions δ+(s) used in the path to be equal in any state s ∈ S except for
the initial and final state. According to the standard cost function c, using a
transition (s, a, s′) ∈ T costs c(a) (note that a is a legal move). Hence, we aim
to minimize

∑
t∈T cπ2(t)xt which results in the following ILP formulation.

min
∑
t∈T

cπ2(t)xt (1)

s. t.
∑

t∈δ−(s)

xt −
∑

t∈δ+(s)

xt =


−1 s = sinit

1 s = sfinal

0 otherwise
∀s ∈ S (2)

xt ∈ {0, 1} ∀t ∈ T (3)

The shortest path problem is a special case of the minimum-cost flow problem
which is known to be solvable by linear programming because here an integer
minimum-cost flow always exists [2]. Hence, Equation (3) can be relaxed to
obtain the LP formulation given by Equations (1), (2) and (4).

xt ≥ 0 ∀t ∈ T (4)

4.2 A Network Representation of Process Trees

When we transform process trees into equivalent transition systems, we see that
concurrency causes the state space to grow exponentially. Of course, when we
solve the shortest path problem on the resulting systems via an (I)LP as above,
the exponential number of states results in an exponential number of variables
and constraints. In the synchronous product, however, this state explosion prob-
lem in essence confines itself to transitions representing model moves while the
ordering of both, log moves and synchronous moves is already widely determined
by the sequence of activities defined in the trace.

Formally, we introduce a network representation of a process tree which we
use as a basis for the alignment problem. This process tree network is largely
similar to the transition system of a process tree except for the representation of
the parallel operator. Apart from that, the most important change is the intro-
duction of arc capacities, which allow us to split the flow for parallel subtrees.
The idea is for the resulting subflows to capture (independent) computation se-
quences in the parallel subprocesses. Intuitively, the reader might think of the
subflows as tokens that move through a Petri net.

Definition 10 (Process Tree Network). Let PT be a process tree. Its process
tree network N (PT ) = (V,Σ ∪ {τ}, A, V ′, A′, u, vinit , vfinal) is a tuple where V
is the set of nodes, A ⊆ V × (Σ ∪{τ})×V is the set of arcs, V ′ ⊂ V and A′ ⊂ A
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are the sets of synchronization nodes and arcs, respectively, u : A → [0, 1] is a
capacity function, vinit ∈ V is the source node, and vfinal ∈ V is the target
node. It is constructed recursively by starting with the source and target node
vinit , vfinal ∈ V and a constant κ = 1 as follows:
– if PT = τ , adding an arc (vinit , τ, vfinal) with capacity 1/κ,
– for each activity a ∈ Σ, if PT = a, adding an arc (vinit , a, vfinal) with

capacity 1/κ,
– for process trees PT1, . . . , PTn (with pairwise disjoint state spaces), n ∈ N,

• if PT = →(PT1, . . . , PTn), adding new nodes v1, . . . , vn−1 and inserting
N (PTi) with constant κ, source node vi−1, and target node vi for 1 ≤
i ≤ n where v0 = vinit and vn = vfinal ,

• if PT = ×(PT1, . . . , PTn), we take all N (PTi) with constant κ, for
1 ≤ i ≤ n, as independent subsystems and then merge all source nodes
to source node vinit and all target nodes to target node vfinal ,

• if PT = ⟲(PT1, PT2), adding new nodes v1 and v2, arcs (vinit , τ, v1) and
(v2, τ, vfinal) with capacity 1/κ, and inserting N (PT1) with constant κ,
source node v1, and target node v2 and N (PT2) with constant κ, source
node v2, and target node v1, and

• if PT = ∧(PT1, . . . , PTn), adding new synchronization nodes vS and v′S ,
synchronization arcs (vinit , τ, vS) and (v′S , τ, vfinal) with capacity 1/κ,
taking all N (PTi) with constant nκ, for 1 ≤ i ≤ n, as independent
subsystems and then adding arcs (vS , τ, vi) and (v′i, τ, v

′
S) with capacity

1/(nκ) where vi is the source and v′i the target node of N (PTi).

Let us give some intuition on the construction of a process tree network, also
illustrated in Table 1. Given the process tree →(×(a, τ),∧(b, c)) of our running
example, the resulting process tree network shown in Figure 1b is constructed
recursively and in a similar fashion as a transition system, except for the arc
capacities and the modeling of the parallel operator. The inverse of κ, i.e., 1/κ,
represents the intended intensity of the flow propagating through the particular
network (from vinit to vfinal). Initially, κ is set to 1 and therefore, all arc capacities
outside the parallel construct are 1. We now take a closer look at the subtree
∧(b, c). Every parallel construct begins and ends with a synchronization arc and
node (highlighted in blue) which connect the parallel subprocesses to the outer
network construct. First, κ is set to 2 because there are two parallel subtrees
b and c. Then, each subtree is constructed with κ = 2. Finally, every parallel
subtree is connected with τ -arcs of capacity 1/κ = 1/2 (so that the network flow
is split) to the synchronization nodes leading to the final result.

A trace σ ∈ Σ∗ can also be expressed by a process tree network Nσ, which
consists of |σ| + 1 nodes and where each event in the trace is associated with
an arc of unit capacity, i.e., Nσ = ({vi | 0 ≤ i ≤ |σ|}, Σ, {(vi−1, πi(σ), vi) |
1 ≤ i ≤ |σ|}, ∅, ∅, 1, v0, v|σ|). Analogously to transition systems, we can now
form a synchronous network following the same idea, but based on process tree
networks, to provide the basic structure for the MILP formulation.

Definition 11 (Synchronous Network). Let σ ∈ Σ∗ be a trace and let PT be a
process tree. Given the trace network Nσ = ({vi|0 ≤ i ≤ |σ|}, Σ, {(vi−1, πi(σ), vi)|
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1 ≤ i ≤ |σ|}, ∅, ∅, 1, v0, v|σ|) and the network of the process tree N (PT ) :=
(VPT , Σ ∪{τ}, APT , V

′
PT , A

′
PT , uPT , vPT , v

′
PT ), their synchronous product Nσ ⊗

N (PT ) := (V,LM , A, V ′, A′, u, vinit , vfinal), also denoted as synchronous network
N (σ, PT ), can be constructed iteratively where
– V := Vσ × VPT and V ′ := Vσ × V ′

PT ,
– A := AM ∪AL ∪AS ∪A′ ⊆ V × LM × V where

• AM :=
⋃

0≤i≤|σ| A
M
i and Aτ :=

⋃
0≤i≤|σ| A

τ
i are model arcs with

AM
i := {((vi, π1(a)), (≫, π2(a)), (vi, π3(a))) |a ∈ APT \A′

PT ∧π2(a) ̸= τ}
and Aτ

i := {((vi, π1(a)), (≫, τ), (vi, π3(a))) |a ∈ APT \A′
PT ∧π2(a) = τ},

• AL :=
⋃

1≤i≤|σ| A
L
i are log arcs with

AL
i := {((vi−1, v), (πi(σ),≫), (vi, v)) | v ∈ VPT \ V ′

PT },
• AS :=

⋃
1≤i≤|σ| A

S
i are synchronous arcs with

AS
i := {((vi−1, π1(a)), (πi(σ), π2(a)), (vi, π3(a)))|a ∈ APT \A′

PT∧π2(a) =
πi(σ)},

• A′ :=
⋃

0≤i≤|σ| A
′
i are synchronization arcs with

A′
i := {((vi, π1(a)), (≫, π2(a)), (vi, π3(a))) | a ∈ A′

PT },
– ∀a ∈ A : u(a) := min({1}∪{uPT (a

′)|a′ ∈ APT∧π3(a
′) = π2(π1(a))}) ∈ [0, 1],

– vinit := (v0, vPT ) ∈ V and vfinal := (v|σ|, v
′
PT ) ∈ V .

Figure 1d shows the resulting synchronous network of the trace ⟨b, a, c⟩ and
the process tree →(×(a, τ),∧(b, c)). There are no loops in the example, but note
that their arc capacity is bounded like all other arcs. Due to the capacity con-
straint, running through a loop repeatedly is not possible (when we assume flows
with maximal intensity). However, this is not a contradiction, as it ultimately
represents model moves and only the shortest firing sequence between two states
is sought. Moreover, it should be emphasized that synchronization nodes are
only incident with synchronization and model arcs.

In terms of the ILP formulation in Equations (1) to (3), we have to adapt
to the new network structure with arc capacities and adjust the cost function
accordingly. The binary decision variable xa ∈ {0, 1} still indicates whether an
arc a ∈ A is part of the shortest path (xa = 1) or not (xa = 0).

min
∑

a∈AM

xa +
∑
a∈AL

uaxa −
∑
a∈AS

(1− ua)xa (5)

s. t.
∑

a∈δ−(v)

uaxa −
∑

a∈δ+(v)

uaxa =


−1 v = vinit

1 v = vfinal

0 otherwise
∀v ∈ V (6)

∑
a∈AS

i

xa ≤ 1 ∀1 ≤ i ≤ |σ| :
∣∣AS

i

∣∣ > 1 (7)

xa ∈ {0, 1} ∀a ∈ A (8)

Obviously, we now have to account for the arc capacities ua in the flow conser-
vation constraint for each node in Equation (6). Further, we have to adjust the
objective such that the costs of moves accord with the standard cost function.
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Based on the network structure, we see that using a model arc a ∈ AM ∪ Aτ

always corresponds to a model move; therefore, their cost remain the same. This
does not necessarily apply to log moves because in case of a log move within
a parallel construct, a log arc a ∈ AL must be used for each flow in parallel
subtrees; therefore, their cost are weighted with the arc capacity ua. For the
same reason, the costs for using a synchronous arc a ∈ AS must also be adjusted
as the other partial flows within a parallel construct must switch to log arcs,
whose additional costs must be compensated for here; therefore, their cost are
reduced based on the difference to their arc capacity. Note that due to the net-
work structure, neither log nor synchronous moves can be part of a cycle. Thus,
the solution space remains bounded even with negative costs for synchronous
arcs. In case of duplicate labels in the process tree, the network might allow to
use more than one synchronous move on the same trace activity; however, the
newly introduced constraint in Equation (7) ensures that at most one of the
synchronous arcs is used per activity in the trace.

4.3 Relaxed MILP Formulation

Due to the construction of the network, each synchronization node v′ ∈ V ′ is
incident with exactly one synchronization arc a′ ∈ A′. Let δ′ : V ′ → A′ be the
bijection which assigns that particular arc a′ ∈ A′ to each node v′ ∈ V ′. The
binary decision variable yv′ ∈ {0, 1} therefore implicitly indicates whether the
corresponding synchronization arc δ′(v′) ∈ A′ is used (yv′ = 1) or not (yv′ = 0).
For better readability, we also introduce the function ρ+ (ρ−) which adapts the
function δ+ (δ−) in such a way that synchronization arcs are resolved.

ρ± : V → P(A \A′), v 7→ ρ±(v) :=
(
δ±(v) \A′) ∪ ⋃

a′∈δ±(v)∩A′

ρ±(π2±1(a
′))

This way, we are able to isolate the synchronization arcs and relax the decision
variable for all remaining arcs to represent the flow on that arc. That is, the
continuous variable xa ∈ [0, ua] denotes the flow on arc a ∈ A \ A′. As a result,
capacities no longer have to be taken into account separately. The isolation of the
synchronization arcs also permits that they can be ignored in the flow conserva-
tion constraint in Equation (10) at any node v ∈ V \V ′ as the corresponding arcs
before or after the synchronization arc are now considered here instead. For each
synchronization node v′ ∈ V ′, Equation (11) ensures flow conservation where the
flow on a synchronization arc is still determined via its capacity. Due to the net-
work structure, the synchronization arc at a node v′ ∈ V ′ is always oriented
contrary to all remaining arcs; thus, we simply use δ(v′) := δ+(v′)∪ δ−(v′) here.
Finally, the objective is adjusted by factoring in the flow via the arc capacities.

It remains to show that the relaxation leads to the same optimal solution as
the ILP formulation in Equations (5) to (8). The network structure outside of
parallel constructs is identical to that of the transition system and the individual
subtree representations within a parallel construct are structurally independent.
Although the arc capacities are not necessarily integer, they are constant for



Process Tree Alignments 13

each subcomponent and Equation (11) ensures that the flow within a subcom-
ponent is exactly this constant. Therefore, there exists a common factor such
that all arc capacities are integer and because of the structural independence of
subcomponents an integer minimum-cost flow would always exist [2].

min
∑

a∈AM

1

ua
xa +

∑
a∈AL

xa −
∑
a∈AS

(
1

ua
− 1

)
xa (9)

s. t.
∑

a∈ρ−(v)

xa −
∑

a∈ρ+(v)

xa =


−1 v = vinit

1 v = vfinal

0 otherwise
∀v ∈ V \ V ′ (10)

∑
a∈δ(v′)\A′

xa = uδ′(v′)yv′ ∀v′ ∈ V ′ (11)

∑
a∈AS

i

1

ua
xa ≤ 1 ∀1 ≤ i ≤ |σ| :

∣∣AS
i

∣∣ > 1 (12)

xa ≤ ua ∀a ∈ A \A′ (13)
xa ≥ 0 ∀a ∈ A \A′ (14)
yv′ ∈ {0, 1} ∀v′ ∈ V ′ (15)

5 Evaluation

To analyze the performance of our MILP-approach, we developed a proof-of-
concept implementation and evaluation3 in the PM4Py ecosystem [3] using the
Gurobi Optimizer [12]. We compared the performance of our implementation
(MILP) with the general PM4Py implementation based on the A* approach
(Standard) and an optimized approximation algorithm for alignments on pro-
cess trees (Approximation). For each algorithm and trace variant, we took the
best out of 10 repetitions (meaning the minimum required time for comput-
ing the costs of an optimal alignment). To visualize the results, we computed
the performance factors for each trace variant, that is, we took the best run-
time and divided the runtime of all three algorithms by this optimal runtime
(trace-variant-wise). For instance, a performance factor of 2 indicates, that the
algorithm took twice as long as the best algorithm.

Not all algorithms finished computation in a reasonable amount of time, so
we set a timeout of 65 seconds (incl. 5 seconds to compensate for overhead and
give each algorithm the safe chance to finish within one minute). Algorithms
that hit this timeout in any run were considered to have failed (on this variant),
and performance factors are not computed. In the charts below, we plotted the
empirical CDF of the performance factors per algorithm. In cases where the
frequencies do not sum up to 1, the algorithm ran into timeouts on a certain
fraction of instances.
3 https://git.rwth-aachen.de/christopher.schwanen/process-tree-alignments
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Real-world event logs: We used the well-known Sepsis Cases event log [15] and
the Inductive Miner [13] to discover process trees with different noise thresholds
(0%, 10%, 25%, and 50%) against which we aligned the log. The Inductive
Miner produces process trees with unique labels. Since the alignment problem
for such trees is much simpler (solvable in polynomial time), we further renamed
duplicate labels in traces (adding a suffix, up to 5 repetitions) so that we could
later (after discovery) merge the labels again (by removing the suffix). The results
are depicted in Figure 2. It can be seen that our MILP approach outperforms
both other algorithms clearly on the Sepsis Cases event log. The picture is even
clearer for lower noise thresholds. We obtain a similar picture on the BPI Chal-
lenge 2012 and 2017 event logs [9, 10]. While on process trees with unique labels,
the MILP and the approximation algorithm are usually close (and clearly supe-
rior to the standard algorithm), as soon as we drop the unique label property,
our MILP approach dramatically outperforms the other two algorithms. To give
one example, for the BPI Challenge 2017 (with configuration 0 % noise threshold
and repeated labels) the approximation algorithm could align none of the 1000
randomly chosen variants within the time bound, while the standard algorithm
could only align about 9 % of the variants. At the same time, our MILP approach
was successful on 99.8 % of all variants with a median computation time of about
14 seconds.

Figure 2: Performance factors of our MILP approach, the Approximation ap-
proach, and the Standard approach on the runtimes when computing alignments
for the Sepsis Cases event log.
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Figure 3: Performance factors of our MILP approach and the Approximation ap-
proach on the runtimes when computing alignments for the artificial Palindrome
event log.

Artificial event log: Concurrency is the main driver for the complexity of the
alignment problem, so we also took artificial examples which put concurrency
into focus. For m = 10 and n = 10 we considered traces wm = ⟨a⟩m · ⟨b⟩ · ⟨a⟩m
with two activities a and b of which we grouped n copies together to get a process
tree L(PT [m,n]) = wm � wm � · · ·� wm. We then sampled several traces of
the form ⟨a, . . . , a, b, a, . . . , a⟩n and aligned them against the tree PT [m,n]. The
Standard algorithm uniformly failed to solve these instances, so we excluded
it from the analysis. Our MILP approach could always find a solution (within
the time bounds). The Approximation algorithm could find a solution in most
cases, but was far beyond the performance of our MILP approach. Figure 3
demonstrates that in more than 70 % of inputs it took more than twice as long.

6 Conclusion

We gave the first MILP formulation for alignments on process trees together with
a proof-of-concept implementation and evaluation. Our experiments show that
our new approach outperforms the existing algorithms in PM4Py. This sheds
new light on the alignment problem which is known to be inherently difficult
to solve in practice. In particular, our work demonstrates that the study of re-
stricted model classes can lead to new algorithmic approaches and to specialized
algorithms which perform more efficiently due to the utilization of additional
structure. It is clear that our techniques generalize to larger classes of process
models. It remains a key question for future research to see how far our MILP
approach can be pushed. At the same time, there are many angles for deeper
investigations of MILP encodings on process trees. For instance, are there other
encodings for which common solvers perform even better or can we further im-
prove the encoding given in this paper? Also, we can now access the huge tool-
box of mathematical optimization and study questions such as how accurate
LP relaxations of the alignment computation become. Specifically, it would be
interesting to investigate the accuracy loss when we relax the MILP to become
an efficiently solvable LP.
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