
Domain-Driven Design Representation of
Monolith Candidate Decompositions

Miguel Levezinho1[0000−0003−0995−2094], Stefan Kapferer2[0009−0007−1097−7965],
Olaf Zimmermann2, and António Rito Silva1[0000−0001−9840−457X]

1 INESC-ID, University of Lisbon Instituto Superior Técnico, Lisbon, Portugal
{miguel.levezinho,rito.silva}@tecnico.ulisboa.pt

2 OST Eastern Switzerland University of Applied Sciences, Rapperswil, Switzerland
{stefan.kapferer,olaf.zimmermann}@ost.ch

Abstract. Microservice architectures have gained popularity as one of
the preferred architectural approaches to develop large-scale systems.
Similarly, strategic Domain-Driven Design (DDD) gained traction as the
preferred architectural design approach for the development of microser-
vices. However, DDD and its strategic patterns are open-ended by de-
sign, leading to a gap between the concepts of DDD and the design of
microservices. This gap is especially evident in migration tools that iden-
tify microservices from monoliths, where candidate decompositions into
microservices provide little in terms of DDD refactoring and visualiza-
tion. This paper proposes a solution to this problem by extending the
operational pipeline of a multi-strategy microservice identification tool,
called Mono2Micro, with a DDD modeling tool that provides a language,
called Context Mapper DSL (CML), for formalizing the most relevant
DDD concepts. The results are validated with a case study by compar-
ing the candidate decompositions resulting from a real-world monolith
application with and without CML translation.

Keywords: Domain-Driven Design · Microservices · Migration.

1 Introduction

Microservice architectures have become one of the architectures of choice for
emerging large enterprise applications [23, 6]. This adoption results from the ad-
vantages of partitioning a large system into several independent services, which
provide qualities such as strong boundaries between services; independent de-
velopment, testing, deployment, and scaling of each service; and service-tailored
infrastructures [19, 10, 27]. On the other hand, topics such as how to distribute
the system and the consistency model might stagger the design early on. The
use of a monolith architecture, where the business logic of the system is intercon-
nected, has the advantage that it does not require early modularization. The neat
identification of modules occurs through refactorings, after initial development,
which allows one to explore the application domain first [11].

Therefore, it is common practice to start with a monolith and, as the system
grows in size and complexity, migrate to a more modular architectural approach,

2 M. Levezinho et al.

such as a modular monolith [12] or a microservice architecture. Since this archi-
tectural migration is not trivial [25], recent research has proposed approaches
and tools to help the migration process [1, 2].

This has led to the development of Mono2Micro, a modular and extensible
tool for the identification of microservices in a monolith system [20]. Mono2Micro
focuses on identifying transactional contexts to inform its generated candidate
decompositions [22]. To this end, it integrates several approaches, such as static
code analysis of monolith accesses to domain entities [29], dynamic analysis of
monolith execution logs [4], lexical analysis of abstract syntactic trees of monolith
methods [8], and analysis of the history of monolith development [21]. Further-
more, Mono2Micro supports a set of measures and graph views to evaluate the
quality of the generated candidate decompositions [28].

However, as with most research on the identification of microservices in mono-
lith systems, Mono2Micro does not allow software architects to further model
generated candidate decompositions using Domain-Driven Design (DDD) [7],
which has shown good results on microservice design [33] and growing interest
in the industry [34]. Instead, Mono2Micro representations of candidate decom-
positions are based on sequences of read and write accesses to the monolith
domain entities, which are difficult to work with when trying to redesign the
original monolith system and its functionalities for a modular architecture.

This paper addresses this problem by providing a representation of the
Mono2Micro candidate decompositions in terms of automatically generated tac-
tical and strategic DDD patterns. In this way, software architects can work on
candidate decompositions from the perspective of DDD.

This is achieved by extending the operational pipeline of Mono2Micro with
a connection to Context Mapper, a DDD-focused modeling tool that provides
a Domain-Specific Language, named Context Mapper DSL (CML). CML sup-
ports the declarative description of DDD domain models, using DDD concepts
as building blocks of the language [16]. With this goal in mind, the following
research questions are raised:

– RQ1: How can current approaches to the identification of microservices in
monolith systems be extended to include DDD?

– RQ2: Can the results of a candidate decomposition based on entity accesses
be represented in terms of DDD?

– RQ3: Can an architect benefit from the use of a tool that integrates DDD
when analyzing and working on a candidate decomposition?

To answer these research questions, a real monolith system was used as a case
study. The resulting candidate decompositions of this system were generated
with and without the new DDD modeling capabilities and then compared.

The remainder of this paper is structured as follows. Section 2 goes over the
current literature on DDD application and microservice identification tools. Sec-
tion 3 gives some background on the Mono2Micro and Context Mapper tools.
Section 4 presents the solution to the aforementioned research questions. Sec-
tion 5 provides the validation of the solution with a case study application, and

DDD Representation of Monolith Candidate Decompositions 3

in Section 6 the results and answers to the research questions are discussed.
Finally, Section 7 concludes the paper.

2 Related Work

The application of DDD in microservice development, although widely practiced,
is still poorly formulated [30], the focus being in terms of modeling tools that
leverage tactic and strategic DDD patterns [34].

Most research extends existing standards to convey DDD concepts. They use
annotated constructs, such as in [26], where a mapping from DDD to UML is
presented with the use of annotations inside UML class constructs, or in [18],
where an annotation-based DSL was developed to scope objects and attributes
within the concepts of DDD. However, they do not support all DDD patterns,
especially strategic ones such as Bounded Context relationships, which are useful
when modeling microservices from candidate decompositions.

Context Mapper is an exception to this, providing a DSL to model tactic
and strategic DDD patterns [16], rapid model prototyping by deriving Domains
and Bounded Contexts from use case definitions [17], and integration with other
technologies such as Microservice Domain-Specific Language (MDSL) [15].

Other research also explores the extensibility of DDD to better fit other
stages of software development. In [13] they define Domain Views, which enable
different stakeholders to perceive the domain model with their respective knowl-
edge base. The Context Mapper tool also provides Domain Views through the
definition of types of Bounded Context and Context Maps [16].

On the other hand, there has been extensive and recent research on tools for
the identification of microservices in monolith systems [1]. However, these tools,
such as Mono2Micro [20], do not provide output that enables DDD-based editing
and modeling, they mostly provide decompositions that are service-oriented and
not domain-oriented.

To our knowledge, the only tool that supports the reverse engineering of DDD
concepts is the Discovery Library tool [16]. It produces domain models from
Spring Boot3 service APIs using discovery strategies. Through code analysis,
it finds specific Spring Boot annotations and maps them to the corresponding
DDD concepts.

3 Background

To better inform the integration of Context Mapper into the Mono2Micro pipeline,
this section gives an overview of the architecture of both tools and compares
them.

3 https://spring.io/projects/spring-boot

4 M. Levezinho et al.

3.1 Mono2Micro

Mono2Micro is a migration tool that provides candidate monolith decomposi-
tions composed of clusters of domain classes. This work initially focused on the
identification of microservices driven by the identification of transactional con-
texts [22], but other strategies have been added [4, 8, 21].

Fig. 1. The five stages of the Mono2Micro operational pipeline [20]. Each stage can
use the output of former stages as input.

Mono2Micro is designed as a pipeline, which is represented in Figure 1. The
five stages of the pipeline are:

1. Collection: Implements several static and dynamic code collection strategies
to represent monoliths, including representations based on accesses to source
code domain entities, functionality logs, and commit history and authors.

2. Decomposition Generation: Partitions the monolith domain entities into clus-
ters using a set of similarity criteria, with a focus on producing good quality
decompositions.

3. Quality Assessment : Compares the decompositions and calculates the mea-
sures that are used to evaluate the generated decompositions. The measures
include coupling, cohesion, size, and complexity.

4. Visualization: Depicts decompositions in the form of graphs with multiple
levels of detail. Nodes and edges can represent different elements, depending
on the chosen collection strategy.

5. Editing and Modeling : Provides an interface with operations to modify the
automatically generated decompositions so that the architect can refine them.
Quality measures are also automatically recalculated, if applicable.

Each stage is composed of one or more modules that output artifacts for
the next stage in the pipeline. The underlying model of the tool that makes up
these modules and artifacts is also built with several extension points, making
it possible to support multiple decomposition strategies.

However, this pipeline does not include any way for an architect to model
candidate decompositions using DDD after the Decomposition Generation stage.

DDD Representation of Monolith Candidate Decompositions 5

More concretely, in the Visualization stage, graph representations of the decom-
position include cluster-based views of the decomposition domain entities, and
functionality-based views that represent its sequence of accesses to domain enti-
ties ("Graphs" in Figure 1). There are no DDD-based views that show the model
of each candidate microservice. Likewise, the Editing and Modeling stage does
not contain any operations related to the application of DDD. This is where
Context Mapper comes in.

3.2 Context Mapper

Context Mapper is a modeling framework that provides a DSL to design systems
using DDD concepts. This DSL, henceforth called Context Mapper DSL (CML),
was developed to unify the many patterns of DDD and their invariants in a
concise language [16]. Figure 2 shows an example of the CML syntax, with the
declaration of a Context Map containing two Bounded Contexts.

Fig. 2. Example syntax of CML, containing the syntax for defining a Context Map
(1-6); Bounded Contexts (8-29, 31-32); Aggregates (9-21); Entities (10-15,17-20); and
Services (24-27).

Within Bounded Contexts, one can define Aggregates, which consist of a group
of closely related domain objects that form a unit for the purpose of data con-
sistency. This consistency is enforced inside the Aggregate by its root Entity,
which represents the only entry point. For example, in Figure 2 the Customers
aggregate has the Customer entity as its root.

Although DDD focuses on the Domain Layer of systems, where the business
logic is residing, a CML Bounded Context can also represent the Application
Layer, which manages services that call different parts of the system, including
processes in other layers. Using the Application keyword, Application Services

6 M. Levezinho et al.

can be defined, among other constructs, and contain operations like
createCustomer and getCustomer as represented in Figure 2.

In addition to the CML language, Context Mapper also contains other utili-
ties to facilitate modeling activities. These include the following:

1. Discovery Library : Implements several strategies to reverse engineer source
code artifacts and represent them in CML [14].

2. Architectural Refactoring : Includes operations to refactor and transform CML
code for easier modeling.

3. Diagram Generators: Provide translators to visualize CML artifacts in dia-
gram form, such as UML representations of Bounded Contexts and BPMN
maps of Aggregate states.

Each of these features has similarities with the features in Mono2Micro. First,
the Discovery Library performs a similar job as the Collectors of Mono2Micro,
but more importantly, it provides a way to generate CML from its input. Sec-
ond, the Architectural Refactoring (AR) module supports the architect on the
edition and modeling of CML models, as the Editing and Modeling stage of
Mono2Micro. However, AR operations are built on DDD concepts. Finally, the
Diagram Generators module can provide ways to view a candidate decomposi-
tion from the perspective of DDD, also something missing in Mono2Micro, which
presents decompositions as a graph of clustered domain entities. It also includes
generation of service contracts in the Microservice Domain Specific Language
(MDSL), which is another DSL for specifying microservices, and that can lead
to direct code generation for Open API, gRPC, Jolie, GraphQL, and plain Java.

4 Solution Architecture

The proposed extension to the Mono2Micro microservice identification pipeline
provides a representation of candidate decompositions in CML, so that DDD can
be used for modeling and refactoring activities. Figure 3 shows this extension
in terms of modules and their input and output artifacts. The top process bar
represents the relevant stages of the Mono2Micro pipeline, and the different
colors separate existing modules from new ones. The following sections, each
corresponding to one of the research questions, explain each module and artifact
in more detail.

4.1 Tool Integration

Mono2Micro and Context Mapper are built with an emphasis on modularity
and extensibility. This makes it viable for Context Mapper to integrate into the
Mono2Micro pipeline. However, it is still important to respect the models of
each tool to avoid compromising their internal cohesion. In practice, this meant
pursuing a low-coupling solution when connecting the tools. This solution was
achieved by leveraging on the Discovery Library (DL).

DDD Representation of Monolith Candidate Decompositions 7

Fig. 3. Mono2Micro pipeline extension to support CML representation of candidate
decompositions. In blue, the relevant pipeline steps (top) and modules. In orange, the
extension to the pipeline, composed of the addition of new modules.

As described in Section 3, the DL is a standalone tool capable of generating
CML code. This is done using discovery strategies that translate input into CML.
Since the DL was designed to be highly extensible, it also provides an API for the
creation of these discovery strategies. Using this API, the Mono2Micro pipeline
was extended with a module that defines new discovery strategies capable of
translating candidate decompositions into CML. This module is represented by
the CML Translator in Figure 3.

The CML Translator has two stages. In the first, the internal representations
of a decomposition in the Mono2Micro model are used to create a JSON contract
that contains all the information needed to map a candidate decomposition to
CML. This contract serves as input for the new discovery strategies and adds
a layer of decoupling between the Mono2Micro model and the DL model, en-
suring that changes made to the former do not inadvertently propagate to the
latter. In the second stage, the new discovery strategies translate the contract
to an internal representation of CML in the DL model. This model is, in turn,
automatically converted to actual CML code.

4.2 DDD Mapping

For the new discovery strategies to perform the translation to CML, the con-
cepts that form a candidate decomposition must be mapped to the DDD concepts
first. Since DDD and its concepts are structural in nature [7], a candidate de-
composition was also structurally defined, based on its internal representation in
Mono2Micro. A candidate decomposition is composed of three key concepts: en-
tities, which represent domain classes in the monolith; clusters, which represent
a set of entities grouped by similarity criteria through a clustering algorithm; and
functionalities, which represent sequences of read/write accesses to entities in
one or more clusters. Mapping a candidate decomposition to DDD corresponds
to mapping these three concepts and understanding what information is needed

8 M. Levezinho et al.

from Mono2Micro once a DDD concept is chosen. Figure 4 shows a summary of
the achieved mappings, which are discussed in the next paragraphs.

Fig. 4. Mapping strategy of candidate decomposition concepts from Mono2Micro
(M2M) to DDD and CML.

Entity Mapping The entities of a candidate decomposition, by definition, are
already based on the concept of Entity from DDD, which facilitates this mapping.
The main difference is that Mono2Micro does not require the internal structure
of entities to generate candidate decompositions, while in DDD and CML the
internal state and relationships with other entities are relevant information to
model an Entity. To guarantee a more complete translation of candidate decom-
position entities into CML, a new source code collector module was added to the
Mono2Micro Collection stage, aptly named Structure Collector as shown in Fig-
ure 3. This module uses the Spoon Framework library [24] to analyze and collect
structural information from entities in the monolith domain, including entity
names, entity attributes, and relationships between entities, i.e. composition or
inheritance.

Cluster Mapping The main criteria that dictate how entities are clustered
in the Mono2Micro Decomposition stage are based on transactional similarity.
This means entities commonly accessed together (i.e. read/write) during the
same transactions are more likely to belong in the same cluster. Similarly, a
DDD Aggregate is defined as a group of tightly coupled domain objects that can
be seen as a unit for the purpose of data changes during transactions, which
makes it a good fit to represent a cluster. However, the concept of cluster also
fits the concept of a DDD Bounded Context. This is because clusters define phys-
ical boundaries between microservices in a candidate decomposition and can be
evaluated based on coupling with other clusters in the same decomposition. This
dual mapping of the cluster concept could be achieved with different variations
in the number of generated Bounded Contexts and Aggregates, but in the end the

DDD Representation of Monolith Candidate Decompositions 9

chosen mapping was to take each cluster and generate a corresponding Bounded
Context and single Aggregate inside it, which in turn contains all the entities in
the cluster. This does not mean that the end product is to have one Aggregate per
Bounded Context. It is important to remember that the generated CML code is
by no means final and that further refactoring is expected by the architect doing
the modeling. Starting from this initial mapping that satisfies the definition of
a cluster, architects have the ability to further refine the model by partitioning
the generated Aggregate of each Bounded Context using not only entity access
information, but also the new structural context of entities that is not available
in Mono2Micro. Additionally, since entities that share structural relationships
in the monolith can likely end up in different clusters after decomposition, the
Context Map definition is updated with a relationship between Bounded Con-
texts in the direction of referenced Entities. This reference is also replaced with
a reference to a newly created local Entity, which represents the outer Entity
locally, so that the architect can better visualize which references need to be
refactored. This case is shown in Figure 5.

Fig. 5. Generated CML example, representing an Aggregate that contains 2 Enti-
ties. Since Topic referenced an Entity in its fields not present in the Aggregate,
Question_Reference was generated locally to replace this reference.

Functionality Mapping Functionalities are more challenging to represent in
DDD since each functionality is composed of a sequence of read and write ac-
cesses to entities, which is a concept very particular to Mono2Micro and with-
out apparent DDD equivalent concept. Additionally, the sequence of accesses
that represents a functionality can be quite extensive. The reason for this is
the fine-grained nature of the accesses collected from monolith code, due to
their object-oriented design. This contrasts with the coarse-grained communica-
tion that is expected between microservices to avoid distribution communication
costs. Without resolving this granularity issue, it becomes very impractical to
represent functionalities compactly. Fortunately, Mono2Micro provides a Func-
tionality Refactoring tool that rewrites the functionalities of a candidate de-
composition as Sagas [3, 5]. The tool converts several fine-grained microservice
invocations into some coarse-grained ones, and is represented in Figure 3 as
part of the pipeline. Refactoring functionalities as Sagas also makes a possible
map to DDD more adequate. Although the Saga pattern is not a DDD pat-
tern, in practice it can be used in conjunction with DDD to model distributed

10 M. Levezinho et al.

transactions [9]. To supply a construct for the representation of Sagas meeting
the current requirements, an expansion to the CML syntax was proposed and
implemented in Context Mapper, which allows for the definition of distributed
workflows without specifying the communication model of the process. For the
current functionality mapping use case, this new concept can be used to simply
state the steps of the saga, without any implementing technology commitments.
This construct is called Coordination, and is based on the coordination property
of Sagas that specifies whether the steps of a Saga are orchestrated or chore-
ographed [9].In CML, Coordinations can be used to coordinate defined Service
operations, the same way a Saga coordinates steps. Figure 6 shows an example
of the syntax in CML. Coordinations are defined within the Application layer
of a Bounded Context. To reference a Service operation, a coordination step
is divided into three segments, separated by the :: symbol: The name of the
Bounded Context where the operation is defined; the name of the application
Service where the operation is defined; and the name of the operation. Func-
tionalities that do not access other Bounded Contexts are simply mapped to a
Service, also defined in the Application layer of the Bounded Context where they
are defined.

4.3 CML Representation and Interaction

When using Mono2Micro, architects now have the option to convert candidate
decompositions to CML using the translation strategy mentioned so far. Like all
CML discovery strategies, the initial representation of the candidate decompo-
sition in CML is not final. Further refactoring is expected. However, an effort
was made to automatically create a good starting point. The names of enti-
ties, clusters, and functionalities from the initial decomposition are maintained
and used for naming Entities, Aggregates, Bounded Contexts, and Coordinations
in CML. The conversion of the format of functionalities to Sagas also creates
additional constructs, in the form of Service operation calls, which correspond
to Coordination steps in CML. These operations make up the interface of each
Bounded Context in CML, but there is no straightforward name that can be used
to name each operation. As such, several access-based naming heuristics were
implemented in the translation strategy. The architect can further customize
the level of detail they want the name to have regarding access information:
Full Access Trace transcribes the entire ordered entity access sequence that
happens within an operation into the name of that operation; Ignore Access
Types omits the type of access to entities in operation names, i.e. read/write,
replacing it with a "ac" prefix; Ignore Access Order omits the type and or-
der of access to entities in the operation names. Each heuristic used reduces
the number of generated operations, at the cost of entity access details. In its
most reduced form, each operation name shows which entities are accessed in
that step. Access information is also added to each translated entity in the form
of a comment, showing metrics related to the percentage of external and local
accesses to the entity in comparison with the total external and local accesses

DDD Representation of Monolith Candidate Decompositions 11

to the Bounded Context. In contrast to these heuristics, there is also the option
to generate generic names for operations that are not access-based.

Fig. 6. Coordination construct in CML. The steps of the Coordination (4-6) represent
ordered calls to Service operations (10,20,11).

5 Case Study

Quizzes-Tutor (QT)4 is an online quizzes management application developed for
educational institutions. It can be used to create, manage, and evaluate quizzes
composed of varying types of question formats. Teachers can add questions re-
lated to topics of the courses they preside over, while students can answer these
questions within quizzes. Other functionalities include the creation of quiz tour-
naments between students, question proposals from students, and ways to discuss
question answers. This real-world monolith, composed of 46 domain entities and
107 functionalities, was used as a case study to validate the Mono2Micro pipeline
extension, which provides DDD modeling capabilities.

5.1 Decomposition Generation

To start the validation, a candidate decomposition for the QT application must
be generated and chosen. To this end, around 2000 candidate decompositions
were generated with different values of similarity criteria and number of clus-
ters. Candidate decompositions were then filtered on the basis of the values of
their measures. The heuristic used was to order decompositions based on their
coupling value in ascending order, and then based on their cohesion value in de-
scending order, to prioritize decompositions with low coupling and high cohesion.
Of the top 100 results, the candidate decomposition with the lowest complexity
value was chosen. Figure 7 also shows the clusters view of the decomposition
shown in Mono2Micro. Data for this candidate decomposition can be seen in
Table 1, with two noteworthy pieces of information.

To start with, the complexity of each cluster is very high. The complexity
measure represents the migration cost of the functionalities in a cluster. This
migration cost is measured as the cost of re-designing from an ACID context to
a distributed one. Of the initial 107 functionalities, 31 involve distributed calls
4 https://quizzes-tutor.tecnico.ulisboa.pt/

12 M. Levezinho et al.

Table 1. Candidate decomposition measures for the QT case study.

Cluster Entities Functionalities Cohesion Coupling Complexity

Cluster0 6 7 0.81 0.185 787.571
Cluster1 27 107 0.212 0.657 106.832
Cluster2 4 11 0.727 0.179 431.091
Cluster3 9 35 0.654 0.753 322.486

Fig. 7. Mono2Micro decomposition visualization with fine-grained interaction between
clusters. Edges represent functionalities shared between clusters.

composed of several hops between clusters that drive the complexity high. This
is because functionalities are still represented by the fine-grained monolith in-
teractions between entities that can now be in different clusters. To reduce this
complexity, the Functionality Refactoring tool represented in Figure 3 is used to
create coarse-grained interactions between clusters. Table 2 shows the reduction
of invocations for some of the QT functionalities. Applying this complexity re-
duction also makes it viable for functionalities to be represented in a structural
language such as CML. Otherwise, any translation strategy would culminate in
thousands of operation definitions for just a subset of the functionalities, as the
FGI (Fine-Grained Interaction) values show in Table 2. The other noteworthy
piece of information is the high number of entities inside Cluster1 compared to
the other clusters, which means that the entities inside this cluster are more
entangled when it comes to the functionalities that use them, and are more dif-
ficult to separate without creating an overly complex decomposition. It is also
the reason for the non-optimal levels of cohesion and coupling in this cluster. At
this stage, when some manual refactoring of functionalities is needed, modeling
using DDD can help.

Table 2. Refactored functionalities for QT case study. CGI stands for Coarse-Grained
Interaction, and FGI stands for Fine-Grained Interactions.

Name #Clusters CGI FGI Reduction%

concludeQuiz 3 4 73 94.52
getQuizByCode 3 4 33 87.88
getQuizAnswers 4 8 84 90.48

exportCourseExecutionInfo 4 9 110 91.82
importAll 3 5 119 95.8

createQuestion 2 3 24 87.5
getQuizAnswers 4 8 92 91.30

DDD Representation of Monolith Candidate Decompositions 13

The candidate decomposition is translated into CML by the discovery strate-
gies, which outputs a .cml file with a representation of the candidate decompo-
sition. Figure 8 shows a modified snippet of the generated CML, related to the
ConcludeQuiz functionality of a decomposition. Without any optimization, the
translation generates a total of 121 operations, used by 31 Coordinations that
represent the distributed functionalities. With naming heuristics, the number of
service calls can be reduced to 87 using Full Access Trace, to 84 using the Ignore
Access Types, and to 48 using the Ignore Access Order. Table 3 shows the re-
duction of generated services according to which heuristics are used per cluster.
Regarding entity generation, a total of 11 reference entities were generated to
signal structural dependencies between entities, also shown in Table 3, and every
entity is generated with information on the number of accesses to it, from the
total Bounded Context accesses (external and local), as shown in Figure 8. This
information can help to refactor the decomposition further.

Fig. 8. Snippet of the generated CML related to the functionality ConcludeQuiz. Ser-
vice operation names were truncated.

6 Discussion

This section discusses the findings of applying the DDD-based extension to the
operational pipeline of Mono2Micro by analyzing how the implemented solution

14 M. Levezinho et al.

Table 3. Generated CML constructs. The number of services is represented by four
values: No heuristics used; Full Access Trace used; Ignore Access Types used; and Ignore
Access Order used. The number of entities is represented by two values: original entities
and reference entities. The most accessed entity is based on external accesses to the
Bounded Context.

Cluster #Services #Entities Most Accessed Entity

Cluster0 15/7/6/4 6/4 QuizAnswerItem (35.14%)
Cluster1 59/53/52/34 27/3 Quiz (12.2%)
Cluster2 11/5/5/2 4/0 QuestionAnswerItem (30.0%)
Cluster3 36/22/21/8 9/4 QuestionDetails/Image (16.46%)

and the results of its application in the case study answer the research questions
raised in the introduction of this paper.

6.1 Results Validation

Starting with the first research question (RQ1), to evaluate whether the
Mono2Micro operational pipeline can be extended to integrate DDD, through
the use of CML, the first step taken was to measure the level of modularity
and extensibility of the solution. First, modularity deals with how divided a
system is into logical modules, improving separation of concerns and internal
cohesion. The solution is composed of two new modules in Mono2Micro, the
Structure Collector and CML Translator. In terms of cohesion, both modules
respect the pipeline architecture of Mono2Micro, and are placed accordingly
inside it based on their responsibilities. Second, extensibility deals with how
open for extension the features of a system are without putting at risk their core
structure, improving the addition of new functionality. The Structure Collector
was designed from scratch. It provides abstractions for the collection of data from
new frameworks and other types of structural data. The CML Translator is an
extension of the DL API, so it follows that the discovery strategies implemented
have the same design and are also open to extension by providing abstractions.

Moving on to the second research question (RQ2), the mappings of the clus-
ter, entity, and functionality concepts demonstrate how a candidate decompo-
sition can be represented with DDD concepts. Mono2Micro entities are already
based on the concept of DDD Entities, so the mapping is consistent in this re-
gard. In the case of clusters, consistency was maintained by mapping each of
them to a Bounded Context and an Aggregate. For the mapping of functionali-
ties, the sequence of accesses to entities that composed them was first converted
into a structured Saga. This significantly reduced the complexity of the sequence
in terms of size and hops between clusters, and made it simpler to represent with
DDD. Sagas were mapped to Coordinations in CML, which encode an ordered
sequence of service calls, just as Sagas encode a sequence of steps.

Finally, in regard to the third research question (RQ3), the case study shows
how an architect can benefit from the use of this extension. In the case of en-
tity representation, it is possible to observe the attributes of each entity and
also the structural refactorings that must be made in existing entities. In the

DDD Representation of Monolith Candidate Decompositions 15

case of clusters, Aggregates can now be defined and used to further partition
a cluster and its entities based on access patterns, access percentages, and the
structural information provided at generation time. In the case of functionalities,
the architect now has the option of editing their Saga representation in CML,
by editing the generated Coordinations. Mono2Micro only allowed the creation
of fine-grained functionality traces, without any way to edit or visualize them
in a graphical representation. Using CML, these functionalities can be modeled
as Coordinations and edited in the language. Furthermore, Coordinations can
be visualized in BPMN, and the service naming heuristics allow the architect to
reduce the number of generated service calls. This does not reduce the number
of functionality steps but increases the level of reuse of services.

6.2 Practical Relevance and Adoption

The problem addressed with the presented approach is of high relevance to prac-
titioners, mainly software engineers and architects, who need to modernize exist-
ing monolith applications. Such monolith applications without an inner modular
structure, a.k.a. Big Ball of Mud [32], turned out to be a huge challenge in prac-
tice for several reasons, which can also be seen as use cases for our solution
presented in this paper:

– Economic reasons: Maintaining a Big Ball of Mud is often becoming ex-
pensive for software companies. Changing such applications, adding new fea-
tures, or fixing bugs, often takes too much time because of the intertwined
code base and dependencies within the system.

– Scalability and "Cloud readiness": Many companies have to decompose
their applications to migrate to the cloud. The monolithic architecture ap-
proach is not scalable and does not fit the requirements for cloud deployment.

– Autonomous teams and "DevOps": Many companies aim to implement
agile development approaches in which teams develop and operate their part
of an application autonomously [31]. A team should be able to make its
own design and architectural decisions. This requires loosely coupled (micro-
)services or at least a system with loosely coupled modules. The structure
of the organization (teams) defines the architecture of the software.

As already mentioned, the adoption of DDD for service decomposition is
widespread in the software industry. Both our tools, Mono2Micro5 as well as Con-
text Mapper6 are open-sourced and, at least individually, have already gained
some adoption in industry and real-world projects. The proposed approach is
therefore foreseen as an important contribution and support for practitioners
who want to: use a tool that automatically suggests decompositions for an exist-
ing monolith system; and want to express their future architecture and service

5 https://github.com/socialsoftware/mono2micro
6 https://github.com/ContextMapper

16 M. Levezinho et al.

decomposition in terms of DDD patterns and follow the "domain-driven" ap-
proach. Once a CML model is available, practitioners can benefit from all Con-
text Mapper features: iterative and agile modeling, architectural refactorings,
model visualization (diagram generators), or even code generation.

6.3 Threats to Validity

With respect to internal validity, the functionalities used in the decomposition
and CML mapping process are all linear in nature. This is due to the existent
static entity access collection tool in Mono2Micro, which flattens code branches
into a single access sequence in a depth-first fashion. However, previous research
that used the same sequences to develop the Saga representation of function-
alities has shown this has little impact on the final results [5], and support for
multiple traces per functionality is being developed.

In terms of external validity, the current implementation assumes the use of
Java and the Spring Boot JPA Framework to collect entity access and structure
information, but the process is general enough to be applicable to other program-
ming languages and frameworks. The modules that assume these limitations are
also built with abstractions for the implementation of other technologies.

7 Conclusion

This paper proposes a solution pipeline for the lack of DDD in migration tools,
composed of the integration of Context Mapper, a modeling framework that
provides a DSL to represent DDD patterns, into the Mono2Micro decomposition
pipeline, a robust microservice identification tool.

The proposed solution achieves the integration by defining a mapping of con-
cepts between tools, whilst respecting each of the tool models. To support this
mapping, the solution includes several new modules and modifications, includ-
ing a new static collector of entity structural information, a contract for effective
communication between the tools, a translation strategy to generate CML from
Mono2Micro decompositions, i.e. entities, clusters, and functionalities, an exten-
sion to the CML syntax to support concepts from decomposition in the form
of Coordinations, and new diagram generators from CML based on translated
decompositions.

The artifacts developed in the project are publicly7 available together with
the description of the procedures necessary to use them.

This work was partially supported by Fundação para a Ciência e Tecnolo-
gia (FCT) through projects UIDB/50021/2020 (INESC-ID) and PTDC/CCI-
COM/2156/2021 (DACOMICO)

7 https://github.com/socialsoftware/mono2micro/tree/master/tools/cml-converter

DDD Representation of Monolith Candidate Decompositions 17

References

1. Abdellatif, M., Shatnawi, A., Mili, H., Moha, N., Boussaidi, G.E., Hecht, G., Privat,
J., Guéhéneuc, Y.G.: A taxonomy of service identification approaches for legacy
software systems modernization. Journal of Systems and Software 173, 110868
(2021)

2. Abgaz, Y., McCarren, A., Elger, P., Solan, D., Lapuz, N., Bivol, M., Jackson, G.,
Yilmaz, M., Buckley, J., Clarke, P.: Decomposition of monolith applications into
microservices architectures: A systematic review. IEEE Transactions on Software
Engineering 49(8), 4213–4242 (2023). https://doi.org/10.1109/TSE.2023.3287297

3. Almeida, J.F., Silva, A.R.: Monolith migration complexity tuning through the ap-
plication of microservices patterns. In: Software Architecture. pp. 39–54. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58923-
3_3

4. Andrade, B., Santos, S., Silva, A.R.: A comparison of static and dynamic analysis
to identify microservices in monolith systems. In: Tekinerdogan, B., Trubiani, C.,
Tibermacine, C., Scandurra, P., Cuesta, C.E. (eds.) Software Architecture. pp.
354–361. Springer Nature Switzerland, Cham (2023)

5. Correia, J., Rito Silva, A.: Identification of monolith functionality refactorings
for microservices migration. Software: Practice and Experience 52(12), 2664–2683
(2022). https://doi.org/10.1002/spe.3141

6. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microser-
vice architectures: An industrial survey. In: 2018 IEEE International
Conference on Software Architecture (ICSA). pp. 29–2909 (2018).
https://doi.org/10.1109/ICSA.2018.00012

7. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison Wesley (2003)

8. Faria, V., Silva, A.R.: Code vectorization and sequence of accesses strategies
for monolith microservices identification. In: Garrigós, I., Murillo Rodríguez, J.M.,
Wimmer, M. (eds.) Web Engineering. pp. 19–33. Springer Nature Switzerland,
Cham (2023)

9. Ford, N., Richards, M., Sadalage, P., Dehghani, Z.: Software Architecture: The
Hard Parts. O’Reilly Media, Inc. (2021)

10. Fowler, M.: Microservice trade-offs (2015), https://martinfowler.com/articles/microservice-
trade-offs.html

11. Fowler, M.: Monolith first (2015), https://martinfowler.com/bliki/MonolithFirst.html
12. Haywood, D.: In defence of the monolith (2017),

https://www.infoq.com/minibooks/emag-microservices-monoliths/
13. Hippchen, B., Giessler, P., Steinegger, R., Schneider, M., Abeck, S.: Designing

microservice-based applications by using a domain-driven design approach. Inter-
national Journal on Advances in Software (1942-2628) 10, 432 – 445 (12 2017)

14. Kapferer, S.: A Modeling Framework for Strategic Domain-driven Design and Ser-
vice Decomposition. Master’s thesis, University of Applied Sciences of Eastern
Switzerland (2020). https://doi.org/10.13140/RG.2.2.22950.68167

15. Kapferer, S., Zimmermann, O.: Domain-driven service design. In: Dustdar, S.
(ed.) Service-Oriented Computing. pp. 189–208. Springer International Publish-
ing, Cham (2020). https://doi.org/10.1007/978-3-030-64846-6_11

16. Kapferer., S., Zimmermann., O.: Domain-specific language and tools for strategic
domain-driven design, context mapping and bounded context modeling. In: Pro-
ceedings of the 8th International Conference on Model-Driven Engineering and

18 M. Levezinho et al.

Software Development - MODELSWARD,. pp. 299–306. INSTICC, SciTePress
(2020). https://doi.org/10.5220/0008910502990306

17. Kapferer, S., Zimmermann, O.: Domain-driven architecture modeling and rapid
prototyping with context mapper. In: Model-Driven Engineering and Software De-
velopment. pp. 250–272 (2021). https://doi.org/10.1007/978-3-030-67445-8_11

18. Le, D.M., Dang, D.H., Nguyen, V.H.: On domain driven design using annotation-
based domain specific language. Computer Languages, Systems and Structures 54,
199–235 (2018). https://doi.org/10.1016/j.cl.2018.05.001

19. Lewis, J., Fowler, M.: Microservices (2014), http://martinfowler.com/articles/microservices.html
20. Lopes, T., Silva, A.R.: Monolith microservices identification: Towards an ex-

tensible multiple strategy tool. In: 2023 IEEE 20th International Confer-
ence on Software Architecture Companion (ICSA-C). pp. 111–115 (2023).
https://doi.org/10.1109/ICSA-C57050.2023.00034

21. Lourenço, J., Silva, A.R.: Monolith development history for mi-
croservices identification: a comparative analysis. In: 2023 IEEE In-
ternational Conference on Web Services (ICWS). pp. 50–56 (2023).
https://doi.org/10.1109/ICWS60048.2023.00019

22. Nunes, L., Santos, N., Rito Silva, A.: From a monolith to a microservices ar-
chitecture: An approach based on transactional contexts. In: Software Architec-
ture: 13th European Conference, ECSA 2019, Paris, France, September 9–13,
2019, Proceedings. pp. 37–52. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-29983-5_3

23. O’Hanlon, C.: A conversation with werner vogels. Queue 4(4), 14–22 (May 2006).
https://doi.org/10.1145/1142055.1142065

24. Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L.:
Spoon: A Library for Implementing Analyses and Transformations of Java
Source Code. Software: Practice and Experience 46, 1155–1179 (2015).
https://doi.org/10.1002/spe.2346

25. Ponce, F., Márquez, G., Astudillo, H.: Migrating from monolithic architec-
ture to microservices: A rapid review. In: 2019 38th International Confer-
ence of the Chilean Computer Science Society (SCCC). pp. 1–7 (2019).
https://doi.org/10.1109/SCCC49216.2019.8966423

26. Rademacher, F., Sachweh, S., Zündorf, A.: Towards a uml profile for domain-
driven design of microservice architectures. In: Software Engineering and For-
mal Methods. pp. 230–245. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-319-74781-1_17

27. Richardson, C.: Developing transactional microservices using aggregates, event
sourcing and cqrs. InfoQ (2017), https://www.infoq.com/minibooks/emag-
microservices-monoliths/

28. Santos, N., Rito Silva, A.: A complexity metric for microservices architecture mi-
gration. In: 2020 IEEE International Conference on Software Architecture (ICSA).
pp. 169–178 (2020). https://doi.org/10.1109/ICSA47634.2020.00024

29. Santos, S., Silva, A.R.: Microservices identification in monolith systems: Function-
ality redesign complexity and evaluation of similarity measures. Journal of Web En-
gineering 21(5), 1543–1582 (2022). https://doi.org/10.13052/jwe1540-9589.2158

30. Singjai, A., Zdun, U., Zimmermann, O.: Practitioner views on the interrelation
of microservice apis and domain-driven design: A grey literature study based on
grounded theory. In: 2021 IEEE 18th International Conference on Software Archi-
tecture (ICSA). pp. 25–35 (2021). https://doi.org/10.1109/ICSA51549.2021.00011

31. Tune, N., Millett, S.: Designing Autonomous Teams and Services. O’Reilly Media,
Incorporated (2017)

DDD Representation of Monolith Candidate Decompositions 19

32. Vernon, V.: Domain-driven Design Distilled. Addison-Wesley (2016)
33. Vural, H., Koyuncu, M.: Does domain-driven design lead to finding the op-

timal modularity of a microservice? IEEE Access 9, 32721–32733 (2021).
https://doi.org/10.1109/ACCESS.2021.3060895

34. Özkan, O., Önder Babur, van den Brand, M.: Domain-driven design in software
development: A systematic literature review on implementation, challenges, and
effectiveness (2023). https://doi.org/10.48550/arXiv.2310.01905

