
GNN-based Conceptual Model Modularization:
Approach and GA-based Comparison

Syed Juned Ali1[0000−0003−1221−0278], MohammadHadi
Dehghani2[0009−0002−5540−5841], Manuel Wimmer2[0000−0002−1124−7098], and

Dominik Bork1[0000−0001−8259−2297]

1 TU Wien, Business Informatics Group, Vienna, Austria
{syed.juned.ali,dominik.bork}@tuwien.ac.at

2 Johannes Kepler University Linz, CDL-MINT, Linz, Austria
{mohammadhadi.dehghani,manuel.wimmer}@jku.at

Abstract. Due to the crucial role conceptual models play in explicitly
representing a subject domain, it is imperative that they are comprehen-
sible and maintainable by humans. Modularization, i.e., decomposing
an overarching, monolith model into smaller modules, is an established
technique to make the model comprehensible and maintainable. Most
existing modularization approaches focus on the model’s structural as-
pects with sparse consideration of their semantics. On the one hand,
Genetic Algorithms (GA) have been applied to modularize conceptual
models by formulating desired structural model characteristics as multi-
ple objectives. Recently, Graph Neural Networks (GNN)-based methods
have shown promising performance in graph processing tasks, including
graph clustering—but outside the conceptual modeling domain. In this
paper, we present a novel approach for GNN-based conceptual model
modularization and comparatively analyze our approach against an ex-
isting multi-objective GA-based one. Furthermore, we provide a compar-
ative analysis of our novel GNN model against two existing GNN-based
graph clustering approaches. We investigate the dependence of the qual-
ity of the modularized solutions on the model size. The results show,
that our proposed GNN-based modularization outperforms the existing
GNN-based graph clustering approaches and provides a suitable alterna-
tive compared to the GA-based modularization.

Keywords: Conceptual modeling · Model Modularization · Graph neu-
ral networks · Genetic algorithms · ER · Data modeling.

1 Introduction

Conceptual modeling allows to understanding complex domains and communi-
cation among stakeholders, and thus, is essential for enterprise and information
systems engineering and beyond [33]. Due to their crucial role, comprehension of
conceptual models is a prerequisite for value creation. For instance, Entity Rela-
tionship (ER) models are a prominent approach to develop and analyze abstrac-
tions as conceptual representation of data models used by humans. By this, ER

2 S.J. Ali et al.

models abstract the technical details of database models and implementations,
providing dedicated views of conceptual structures hidden in implementation-
oriented data schemas [8].

It has been shown that the usefulness of conceptual models for humans is
inversely proportional to the models’ sizes [40]. Models having already more
than 30 nodes are considered challenging for human comprehension. The more
relationships, the less comprehension is given due to the accompanying increase
in complexity [40]. Therefore, the increased size and complexity can make models
cognitively intractable [13]. Clustering or modularizing conceptual models‡ into
smaller chunks enables humans to communicate better, validate, and maintain
very large models [40].

Existing modularization approaches mostly leverage the topological prop-
erties of conceptual models [13], i.e., characteristics that relate to the graph’s
structure and the arrangement of its elements (vertices and edges) such as de-
gree, connectivity, cyclicity. In the past, Genetic Algorithms (GAs) have been
used to transform the modularization of graphs into an optimization problem
to partition a model into modules, such that the nodes within each module
are closer related to each other than the nodes in the other clusters. These ap-
proaches allow exploring a solution space more efficiently than exhaustive search
methods. They can be particularly useful when dealing with large and complex
graphs where traditional clustering methods might struggle to find optimal or
near-optimal solutions. GAs proved valuable for tasks such as community de-
tection in social networks [4], protein function prediction in bioinformatics [38],
and modular decomposition in software engineering [8].

Graph Neural Networks (GNN) are a variant of neural networks that can
apply deep learning methods on graph-based inputs and train the deep learning
model for a specific task. GNN-based solutions learn a vector-based represen-
tation, i.e., node embedding that is supposed to reflect the graph structural
information captured by a given node in the context of the entire graph. While
GNNs have been successfully applied, among many others, in applications such as
medical diagnosis and electronic health records modeling [24], drug discovery and
chemical compounds synthesis [43], recommender systems [42] and text classifi-
cation [26], GNNs also showed promising results for unsupervised learning-based
graph clustering [10, 30, 44, 45]. Conceptual Model Modularization (CMM) can
be transformed into a graph clustering task, however, GNNs have not yet been
applied to modularize conceptual models. Therefore, in this paper, we present a
novel GNN-based conceptual model modularization approach, a deep conceptual
model modularizer (DCMM). We use the node representation learning from the
node2vec approach in [17] and then use the node embeddings to further train a
DCMM GNN model to modularize a given conceptual model.

We provide a comparative evaluation with an existing GA-based approach
to assess the quality of our GNN-based approach. For this, we extend the GA-
based modularization approach ModuleER [8] initially developed for ER models
for being able to modularize UML class diagrams. We then evaluate the perfor-

‡We use clustering, partitioning, and modularization interchangeably in this paper.

GNN-based Modularization: Approach & Comparison 3

mance of our novel GNN-based approach on UML class diagrams and compare
it with the extended ModuleER approach using cohesion and coupling as the
modularization quality metrics. Furthermore, we also adapt the existing GNN-
based graph clustering approaches Deep Graph Infomax (DGI) [44] and Deep
Modularity Network (DMoN) [30] for the CMM task to provide a comparative
analysis of the state-of-the-art GNN models with our DCMM GNN model.

The main contributions of this paper comprise: (i) DCMM: a novel GNN-
based approach for CMM; (ii) the adaptation of existing GNN-based graph
clustering approaches for CMM; (iii) a comparative evaluation of GNN-based
approaches with GA-based ones for CMM; (iv) a comparative evaluation of
several GNN-based graph clustering approaches for CMM; and, finally, (v) an
analysis of the effect of model size on the different approaches.

The remainder of this paper is structured as follows. Section 2 provides back-
ground information to the different conceptual and technological aspects of our
work. Section 3 presents the details of DCMM. Section 4 provides the details of
our experimental setup for the comparative evaluation of GNN and GA-based
modularization and further presents the results of the experiments we conducted
and the responses to the research questions. In Section 5, we provide insights
gained from our results. Section 6 presents and discusses related work before we
conclude this paper in Section 7 with an outlook to future work.

2 Background
We now introduce the relevant background for this work. In particular, we discuss
the existing GA and GNN approaches as well as the metrics to be used for the
comparative evaluation.

2.1 Conceptual Model Modularization

Modularization of conceptual model aims to determine a suitable set of ele-
ments to form a module. The module elements depend on the intended purpose
of modularization while fulfilling the definition of a module. For e.g, if the mod-
ularization aims to determine modules optimized to answer individual queries,
then the generated modules should be composed of all elements necessary to an-
swer a considered query [23]. Software clustering is a modularization technique
for source code elements such as classes or functions. These elements are grouped
into sets, so-called modules, in such a way that elements residing in the same
module are more similar (to a given definition) to each other than to those in
other modules [32].

2.2 Graph-based modularization

Graph-based modularization uses the structural aspects of a model for identi-
fying module candidates [32]. It produces modules by interpreting a conceptual
model as a graph and applying algorithms to extract related (or sufficiently re-
lated) concepts. Graph-based modularization approaches are often intuitive and
employ statistical methods to determine similarities of concepts or clusters and
require the model to have a graph-based representation (i.e., a set of vertices

4 S.J. Ali et al.

and edges) [23]. The model is generally represented as an adjacency matrix for
graph-based clustering tasks. In this matrix, each element captures if an edge
between the nodes denoted by the indices of the element exists. Each node can
denote an entity of a model, and each edge can represent a dependency between
the entities, e.g., the composition relationship.

2.3 Search-based Modularization

Search techniques, such as Genetic Algorithms (GA), use one or more objec-
tive functions to guide the modularization process, i.e., search for the optimal
solutions, i.e., the solutions that provide optimal scores using the objective func-
tions [29]. These functions quantify the quality of a candidate solution. In case
of CMM, objective functions evaluate the quality of the modules and the mod-
ularization achieved for a given set of modules during the process of search the
optimal modules. Frequently, the objective functions’ intuition is maximizing co-
hesion within and minimizing coupling across the modules [32]. ModuleER [8,15]
uses a GA-based approach for the modularization of ER models. In [2], Mod-
uleER is extended to support graph modularization of multiple different model-
ing languages using a Generic GA-based Modularization Framework.

2.4 Graph Neural Networks-based Graph Representation Learning

The nodes of a graph and their structural properties can be represented in dense
fixed-sized vectors [39]. Recently, there have been approaches that can learn
node representations using the structural aspects of the graphs. Graph Neural
Networks (GNNs) are neural models that learn graph representations via mes-
sage passing between graph nodes by information aggregation of a node from its
neighborhood [20]. The fundamental paradigm of these node embeddings is, that
“similar” nodes have close embeddings. The similarity of nodes is often defined
based on their distance in a graph, e.g., based on their co-occurrence probability
in a random walk [17,20,45]. It is also argued that two nodes should be similar if
they are similar to a graph summary representation [39]. Node2vec learns node
embeddings by maximizing the likelihood of preserving network neighborhoods
of nodes by exploring the network through graph traversal [17]. In recent years,
variants of GNNs such as Graph Convolutional Networks (GCN) [19], Graph-
Sage [19], and Graph Attention Networks (GAT) [39] have demonstrated good
performance on deep learning tasks such as link prediction, node classification,
graph classification, and graph mining [46]. Particularly GraphSage [19] learns a
function that generates embeddings by sampling and aggregating features from
a node’s local neighborhood. This inductive approach enables the model to gen-
eralize to unseen nodes or entirely new graphs.

2.5 GNN-based Modularization

The node embeddings from GNNs can be obtained as a result of optimizing a
GNN model to minimize an objective function i.e., the loss function. The loss

GNN-based Modularization: Approach & Comparison 5

minimization of a GNN model can be used to steer the GNN toward optimization
of graph modularization metrics like cohesion and coupling. Existing approaches
i.e., DGI [44] and DMoN [30] use modularity [31] (see Eq. 1) as a modularization
metric that approaches graph clustering from a statistical perspective.

Q =
1

2m

∑
i,j

(
Aij −

kikj

2m

)
δ(ci, cj) (1)

Modularity measures Q as the divergence between the intra-cluster edges
from the expected one where m is the total edges, ki and ci denotes the degree
and cluster of node i and δ function is defined as δ(ci, cj) = 1 if nodes i and
j are in the same cluster c, and 0 otherwise. Modularity remains one of the
most commonly used and eminently useful graph clustering metrics in scientific
literature [14].

2.6 Modularization Quality Metrics

Once a modularized solution is available, its cohesion and coupling can be eval-
uated as given by Eq. 2 and Eq. 3, respectively.

cohesion =
1

k

k∑
i

ECi

NCi
∗ (NCi

− 1) ∗ 0.5
(2)

coupling =
∑

Ci,Cj

ECi,Cj
(3)

In cohesion, the ECi
denotes the number of edges in cluster Ci, and NCi

is
the number of nodes in Ci. In coupling, ECi,Cj

denotes the number of edges
between the cluster Ci and Cj .

3 Deep Conceptual Model Modularizer

We now describe our end-to-end unsupervised GNN-based conceptual model
modularization approach which is applied to UML class diagrams. In Fig. 1,
we sketch the major steps involved in this modularization technique and fur-
ther contrast it with the Genetic Algorithms-based approach ModulER [8] that
we use for a comparative evaluation of our approach. Furthermore, we provide
the details about the adaptations of the existing GNN-based graph clustering
approaches for our usecase of CMM.

3.1 Model to Graph Transformation

In order for a UML class diagram (CD) to be modularized by graph-based algo-
rithms, each CD undergoes a model to graph transformation in a preprocessing
step. The resulting graph is used as an input to both approaches. We use the
generic conceptual model to knowledge graph transformation methods intro-
duced in [1, 35], which transform models into directed graphs. Each class in the
class diagram is considered as a node and each reference and an inheritance
relation is treated as an edge in the resulting graph.

6 S.J. Ali et al.

Fig. 1: GA (top) and GNN-based (bottom) CMM approaches

3.2 Deep Conceptual Model Modularization

Once we have generated the graph, we transform the graph into an adjacency
matrix A (cf. Section 2) as shown in Fig. 1. Next, we generate node embed-
dings for each node in the graph using A. The embeddings-based representation
of the nodes is generated by running the node2vec algorithm that captures the
structural properties of nodes in a way that preserves their neighborhood rela-
tionships. Node2vec transforms each node into a dense fixed-sized vector X in
Rn∗d (see Eq. 4.1) where d is the dimension of the embedding.

X = Φ(A) where Φ = node2vec and X ∈ Rn×d (4.1)

H
(0)

= X

H
(l)

= ReLU

 ∑
j∈N(i)

1

|N (i)|
W

(l)
H

(l−1)
j

 for l = 1, . . . , L (4.2)

where N (i) is the set of neighbors of node i

Y = softmax (Ω(X,A)) where Ω = H
(L) and Y ∈ Rn×C (4.3)

Cohesion =

k∑
c=1

∑
i,j Aij · Yic · Yjc∑

i,j Yic · Yjc

(4.4)

Coupling =
∑
i,j

Aij ·
(
1 −

k∑
c=1

Yic · Yjc

)
(4.5)

Ldcmm = −Cohesion + Coupling (4.6)

Next we define DCMM in Eq. 4.2 and 4.3 where DCMM takes the node em-
beddings X and the adjacency matrix A and maps each node embedding to a
particular cluster out of C clusters thereby transforming X in Rn∗d matrix to Y
in Rn∗C matrix (see. Eq. 4.3). DCMM is built using l layers of the GraphSage
GNN model as shown in Eq. 4.2. The GraphSage layers apply ReLU [11] activa-
tion which adds the crucial non-linearity required to learn the complex mapping
C that provides high modularization scores. Using C, the node is assigned to
the module with the highest probability, and the modularization result quality
is evaluated using a modularization metric. In general, a GNN model learns to
maximize the modularization quality by minimizing a function that captures the
difference between the evaluated modularization and the ground truth values.
In unsupervised learning, however, we do not have ground truth values. There-
fore, we use metrics that reflect the quality of a modularization quality such as
cohesion (Eq. 4.4) and coupling (Eq. 4.5). We consider a combination of such
metrics as the loss during training and aim to minimize such loss (see Eq. 4.6).

GNN-based Modularization: Approach & Comparison 7

3.3 Adaptation of Existing GNN-based Approaches

To compare with existing GNN approaches, we adapt i) DMoN, an unsupervised
pooling method inspired by the modularity measure of clustering quality [30]
and, ii) Community Deep Graph Infomax (CommDGI), a GNN designed to
handle community detection problems by using a mechanism to capture neigh-
borhood and community information in graphs [44] for CMM. Both DMoN and
CommDGI use the modularity metric in their loss function; however, DMoN
adds a regularization parameter to prevent trivial solutions to the optimization
problem. CommDGI further adds graph and cluster information exchange loss
to their loss functions. The modularity loss is given in Eq. 5.

Lmodularity = − 1

2m
Tr(Y T (A− ddT

2m
))Y) (5)

where Tr is trace of matrix, i.e., sum of the elements in the left diagonal and d is
the degree of a node. We provide the code for all the three GNN models, namely
DCMM as well as adapted DMoN and DGI for CMM publicly available§.

4 Comparative Experimental Evaluation

To evaluate our GNN approach, we compare it with the state-of-the-art Mod-
uleER approach introduced in Section 2, which uses NSGA-II and existing GNNs
— DMoN and DGI. With this evaluation, we aim to systematically answer the
following research questions:

[RQ1] How do GNNs perform compared to GA for CMM?
[RQ1.1] How do GNNs perform compared to GA on hypervolume, cohe-

sion, and coupling metrics?
[RQ1.2] How do GNNs perform compared to GA for different model sizes?

[RQ2] How does DCMM perform compared to existing GNNs?
[RQ2.1] How does DCMM perform compared to DMoN and DGI on hy-

pervolume, cohesion, and coupling metrics?
[RQ2.2] How do DCMM perform compared to DMoN and DGI for different

model sizes?

4.1 Experimental Setup

In the following, we elaborate on the experimental set up the dataset used, the
evaluation method and the metrics used for a comparative analysis.

Dataset Used - To evaluate our approach and train the GNN models, we
use the Modelset dataset [25] that contains more than 5000 Ecore models. We
applied the following exclusion criteria to filter out models of insufficient qual-
ity or models which are not appropriate inputs for an modularization approach:

§https://github.com/junaidiiith/dcmm

https://github.com/junaidiiith/dcmm

8 S.J. Ali et al.

Table 1: Model to Graph Transformation Mappings

Size
Category

Num. of
Models

Min/Max
Nodes

Avg±Std
Nodes

Min/Max
Edges

Avg±Std
Edges

Min/Max
Combined

Avg±Std
Combined

Small 132 30/64 38 ± 7 41/128 80 ± 22 71/163 118 ± 26

Medium 104 31/132 70 ± 19 95/305 178 ± 56 164/420 249 ± 66

Large 27 55/226 130 ± 50 291/1552 591 ± 273 425/1778 722 ± 303

Total 263 30/226 60 ± 34 41/1552 171 ± 177 71/1778 232 ± 206

i) models with less than 30 nodes as this is the limit of cognitive intractabil-
ity [13]; ii) models with edges to nodes ratio of less than 1.2 to reject poorly
connected models such as models with a large number of nodes with only a few
edges; iii) duplicate models; and iv) models that have very few nodes and edges
uncommon. For e.g, given two graphs, one with 126 nodes and 469 edges and
another graph with 127 nodes and 475 edges, if both graphs have more than
90% nodes in common, we consider them as duplicates and remove the one with
the lower number of nodes. These exclusion criteria left us with 263 models of
various sizes. We categorize these models in different sizes as show in Table 1.
To compare the size of two models, we consider the combined number of nodes
and edges and then chose the first 50 percentile of models as small models, 50-90
percentile as medium, and above 90 percentile as large models. The table shows
some descriptive statistics of the models in each model size category.

Technical Setup - In case of GNN-based modularization, we use an em-
bedding dimension of 64 for node2vec, a learning rate of 1e − 3 and use the
Adam optimizer [22] during the training phase. It is common to run the non-
deterministic algorithm many times on each input instance and then perform the
statistical tests. Therefore, in case of GA, in order to get robust results, we run
GA n = 30 times and calculate the score values for each run. In case of GNN,
even though the weights of the GNN model are initialised randomly, however,
as a GNN optimizes the loss function and not searches for the best solution like
in of GA, we get the same results in each GNN run.

In [8], ModuleER uses five fitness functions: cohesion, coupling, the number
of modules, the average number of elements per module, and the standard devi-
ation of module sizes. We have modified the fitness functions to conform to the
modularization quality metrics introduced in Section 2, i.e., only cohesion and
coupling, as we observed that these two can capture the effects of the remaining
metrics as well. The GA algorithm is run 30 times for each input model. In this
setting, the population size is twice the size of each model’s nodes, i.e., it varies
between 60 and 452, and the number of iterations is fixed to 2000 because we
investigated, that even for the largest models it takes less than 2000 iterations
to reach a stable optimum point where no further improvements were observed.

Evaluation Methodology - In the case of GA, we get a set of non-
dominating solutions for a multi-objective optimization problem, i.e., a Pareto
Set. In case of multiple objectives, ModuleER [8] gives a Pareto Set of solutions
for each problem, offering a spectrum of trade-offs between conflicting objec-
tives. However, in case of GNN, we get a single solution. Therefore, in order to

GNN-based Modularization: Approach & Comparison 9

compare a single solution from GNN versus a pareto set from GA, we use the
hypervolume metric to compare a multi-objective solution with a single solution
based on Ishibuchi et al. [21]. NSGA-II runs in a non-deterministic way and it
is common to run the non-deterministic algorithm many times on each input
instance.

Fig. 2: Hypervolume-based GA and
GNN solution comparison

Fig. 2 shows a hypervolume metric-
based comparison of a pareto set solution
from a GA versus a GNN solution. Given
a GA solution Pk of a kth UML model
with k ∈ 1..N with Pk having n pareto
sets PSj ∈ Pk from each run n with
j ∈ 1..n and PSj having points pi ∈ PSj ,
we define Vp in Eq. 6.1 as the hypervol-
ume of a solution p using cohesion and
coupling scores, both of which lie between
0 and 1. Coupling is a minimizing metric,
therefore, we inverse coupling by plotting
1 − coupling. The hypervolume of GNN
is Vg where g is the GNN solution. Note,
that if Vp of a given point is larger than
the other, then the larger Vp solution balances both cohesion and coupling, (see
p3, pb, g1 in Fig. 2) whereas a smaller area indicates a preference towards one of
the objectives (see p1, p4 in Fig. 2). The hypervolume of PSj is the set union of
Vpi

for all p′is ∈ PSj (see. Eq. 6.2). We define the score s as given in Eq. 6.3
to calculate the average number of times Vg is higher than the hypervolume of
the jth pareto set VPSj ∀PSj . Then, we define a HP (.) in Eq. 6.4 that deter-
mines the better algorithm between GA and GNN, given s. Finally, for a given
set of N models, we calculate PHP (.) according to Eq. 6.5 to capture the frac-
tion of models for which one approach outperforms the other. In other words,
PGNN = 0.67 implies that for a given set of N models, GNN provides better
hypervolume score, i.e., PHP (s) = GNN for 67% of the models.

Vp = cohesion ∗ (1 − coupling) (6.1)

VPS =

n⋃
p=1

Vp (6.2)

s =

∑n
j=1 1(Vpg ≥ VPSj

)

n
(6.3)

HP (s) =

{
GNN if s > 0.5,

GA otherwise
(6.4)

PHPx =

∑N
j=1 1(HP (sj) = x)

N
x ∈ {GNN,GA} (6.5)

M(pb, g,m) =

{
GNN if Vgm > Vpb

GA otherwise
(6.6)

M(P, g,m, x) =

∑n
j=1 1(M(pbj

, g,m) = x)

n
(6.7)

σ(PS, g,m) =

{
GNN if M(PS, g,m,GNN) > 0.5

GA if M(PS, g,m,GA) ≥ 0.5
, m ∈ {cohesion, 1 − coupling} (6.8)

10 S.J. Ali et al.

PMm,x =

∑N
i=1 1(σ(Pj , gj ,m) = x)

N
x ∈ {GNN,GA},m ∈ {cohesion, 1 − coupling} (6.9)

Next, we further compare the cohesion and coupling scores of the solutions
of GA and GNN. In case of GA, for a given pareto set of n non-dominating
solutions, we select pb to compare with the GNN solution and pbj as the trade-
off point of each pareto set in jth run. Then, given a GNN solution g and a metric
m, we define M(pb, g,m) which checks if Vg is larger than Vpb

. If yes, then we
consider GNN as the better trade-off solution over GA on metric m. Next, for a
given model with n pareto sets, we take the average M that captures the average
number of runs for which the approach x is better than the other approach in
Eq. 6.7. Then, given the average score, we extract the better approach out of GA
and GNN in Eq. 6.8. Finally, we calculate the percentage of models for which a
given approach x dominates the other on a metric m in Eq. 6.9.

Finally, to compare the three different GNN solutions, i.e., DCMM(pdcmm),
DGI(pdgi), DMoN(pdmon), we consider the Vp, cohesion and coupling scores
(see Eq. 7.1). Then, similar to Eq. 6.4, we get the best performing GNN using
Eq. 7.2 and then we calculate the percentage of N models for which a given
GNN approach is the best out of the three approaches in Eq. 7.3.

GNNmax(P,m) = max(m(pdcmm),m(pdgi),m(pdmon)), m ∈ {Vp, cohesion, 1 − coupling} (7.1)

IGNN(P,m) =

DCMM if pdcmmm = GNNmax(P,m),

DGI if pdgim = GNNmax(P,m),

DMoN if pdmonm = GNNmax(P,m).

(7.2)

PGNNm,x =

∑N
j=1 1(IGNN(Pj ,m) = x)

N
x ∈ {DCMM, DGI, DMoN} (7.3)

4.2 Results

This comparative analysis sheds light on the efficacy of solutions provided by
each approach, contributing to a deeper understanding of their strengths and
limitations in addressing complex modularization tasks. Therefore, we respond
to each RQ in the following.

Response to RQ1 - GA verus GNN. In this RQ, we provide a com-
parative analysis of GA approach with GNN. In case of GNN, we take the best
performing GNN approach out of the three and compare it with GA. The results
for RQ.1 are provided in Table 2 where each value shows the Papproach scores
across different metrics.

The overall results show that GA outperforms GNN-based approach for hy-
pervolume and cohesion metrics, however GNN outperforms GA for coupling
scores. In case of hypervolume, GA outperforms in more than two-third of the
models and provides higher cohesion scores in more than 80% of the models. We
observe that while GNN approaches outperform GA in almost 60% of the cases
for coupling, however, GA still provides a higher hypervolume, a metric which
captures the combination of cohesion and coupling, for almost 70% of the cases.
An explanation for this can relate to the fact that GA outperforms GNN in
cohesion by a larger amount, so the contribution of even better (lower) coupling

GNN-based Modularization: Approach & Comparison 11

Table 2: Overall Performance of GNN over GA

PHP PMcohesion PMcoupling

Model Size GA GNN GA GNN GA GNN

Small 63.63% 36.36% 68.18% 31.82% 36.36% 63.64%

Medium 79.80% 20.20% 94.23% 5.77% 44.23% 55.77%

Large 55.55% 44.44% 85.18% 14.82% 48.14% 51.86%

Overall 69.20% 30.80% 80.22% 19.78% 40.68% 59.32%

scores cannot balance out the contribution of higher cohesion to the hypervol-
ume scores. Overall, this indicates that GA is more suitable for optimizing the
cohesion scores, whereas GNN is suitable for optimizing coupling.

We further evaluate the effect of different model sizes on the comparative
performance of GA and GNN. Interestingly, for hypervolume and cohesion, the
performance of GNNs goes down for medium-sized models and then increases
again for larger models. Furthermore, we see that the performance of GNNs
decreases with larger model sizes for the coupling scores; however, it still provides
better coupling scores than GA. Overall, it is interesting to note that GNN
does provide better performance than GA in some of the metrics and setups.
Moreover, esp. for a large models, we see that GNN produced modularizations
of comparable quality or even of better quality with respect to coupling. Thus, we
consider GNN-based CMM a promising alternative to GA which can be further
investigated for improvements.

Response to RQ2 - DCMM versus DMoN and DGI. Now, we delve
deeper into our DCMM’s performance and compare it to the existing GNN mod-
els for CMM. We present an overall and a size-based performance comparison
in Table 3. Each value in the table shows the percentage of models in a category
for which a given GNN model outperforms the other two GNN approaches.

The results in Table 3 show that DCMM performs better than DGI and
DMoN in most models for all three metrics. In case of hypervolume, DCMM
outperforms DMoN and DGI in over 76% of the cases, outperforming DMoN
(14.44%) and DGI (9.12%). This indicates DCMM’s consistent superiority across
all model sizes. In case of cohesion, DCMM scores highest 66.16%, compared to
DMoN’s 11.78% and DGI’s 22.05%, showing its overall superiority in producing
cohesive clusters. Finally, DCMM demonstrates overall dominance for coupling
with 62.73%, compared to DMoN’s 30.41% and DGI’s 6.84%, confirming its
consistent performance in reducing coupling.

We further evaluate the size-based comparative performance of the three
GNN approaches. We see that in all the three metrics DCMM’s performance
improves in most cases or remains almost similar with an increase in model
size. In case of hypervolume, the performance increases from DCMM being the
best GNN model for 66.67% of the small models to DCMM being the best
GNN model for 92.59% of the large models. In case of cohesion and coupling
as well, DCMM still performs better than the other two GNNs for all the three
model size categories. In case of hypervolume and coupling, DCMM performance
shows an increase with model size. Overall, with this comparative evaluation we

12 S.J. Ali et al.

Table 3: Comparative performance of DCMM with existing GNNs for CMM

PGNNVp PGNNcohesion PGNNcoupling

Model Size DCMM DMoN DGI DCMM DMoN DGI DCMM DMoN DGI

Small 66.67% 19.69% 13.63% 55.30% 15.90% 28.78% 50.74% 41.79% 7.46%

Medium 84.62% 10.57% 4.80% 77.88% 6.73% 15.38% 73.52% 20.58% 5.88%

Large 92.59% 3.70% 3.70% 74.07% 11.11% 14.81% 81.48% 11.11% 7.40%

Overall 76.42% 14.44% 9.12% 66.16% 11.78% 22.05% 62.73% 30.41% 6.84%

see, that our novel DCMM approach clearly outperforms the state-of-the-art for
GNN-based graph clustering for conceptual models.

Based on our results we conclude as follows — i) GA-based approach is still a
valuable approach for CMM, however, GNN-based approaches also turned out to
be very useful alternatives for a large number of models providing better scores
than GA for over 30% of the models and particularly for larger models providing
better scores than GA for over 44% of the large sized models; ii) GNN-based
approaches consistently perform better than GA for modularized solutions with
lower coupling; and, finally, iii) the results underpin our novel DCMM model as
a valuable GNN-based CMM approach, outperforming the state-of-the-art graph
clustering models. DCMM further proves valuable as an alternative to GA-based
approach, especially in case of minimizing coupling between modules.

5 Insights and Threats to Validity

In the following, we present further insights gained through the experiments
conducted that yield additional responses to the outlined research questions.

Insights about RQ.1 - We observed that the model size affects the per-
centage of models for which either of GA and GNN perform better than. GA
excels in achieving higher hypervolume and cohesion. This indicates that GA
is more effective in maintaining tight, cohesive clusters. This is particularly ev-
ident in small and medium models where GA significantly outperforms GNN.
However, GNN shows strengths in minimizing coupling, which is crucial for cre-
ating distinct, well-separated clusters and is therefore, advantageous for appli-
cations where minimizing inter-cluster dependencies is critical whereas GA may
be better suited for tasks requiring tight clustering. GNN’s performance is more
competitive with GA for larger models, indicating its scalability and potential
for handling more complex clustering tasks. Overall, our results show a signifi-
cant potential in applying GNNs for conceptual model modularization; however
there is no one size fits all solution and the choice between GA and GNN needs
to be guided by the specific requirements of the clustering task concerning a
preference over cohesion, coupling, and a combination thereof. Our results do
underpin GNN-based approaches as a suitable candidate for CMM, that can be
investigated and improved further for a better performance by designing im-
proved GNN architectures and loss functions that even better capture the graph
clustering requirements of a conceptual modeler.

GNN-based Modularization: Approach & Comparison 13

Insights about RQ.2 - The results of the comparative performance of
DCMM and existing GNN models show, that DCMM consistently outperforms
both DMoN and DGI across all model sizes and metrics. The performance of
DCMM does not degrade with increasing model size. In fact, the performance
gap between DCMM and the other models widens as the model size increases,
showcasing its scalability. DCMM’s high scores in cohesion and coupling met-
rics suggest that it effectively balances intra-cluster similarity and inter-cluster
dissimilarity, which are crucial for high-quality clustering. This indicates that
DCMM is a robust and scalable solution for GNN-based graph clustering in
conceptual modeling. Furthermore, to the best of our knowledge, given that
DCMM is the first GNN model for graph clustering applied in the domain of
conceptual modeling, these results highlight DCMM’s tailored effectiveness for
this specific domain of conceptual modeling, addressing domain-specific chal-
lenges better than the more generic models like DMoN and DGI.

We now elaborate on the threats to validity according to the widely accepted
categories introduced by Wohlin et al. [41].

Conclusion validity regards issues that affect the ability to draw accurate
conclusions about relations between the treatments and the outcome of an ex-
periment. The selection of a point from a pareto set to compare with the GNN
point falls under this category. There can be several other points in a pareto
therefore the selection criteria of selecting the best trade-off point threatens the
validity of our results. However, in this work, we focused on selecting the bal-
anced solution and in our future work, we explore other criteria to compare a
pareto set of a GA solution with a GNN solution.

Construct validity regards the ability to generalize the results of an exper-
iment to the theory behind the experiment. We mitigated this threat by using
a dataset of 263 UML models for our experiments. These 263 models are the
filtered, non duplicated good quality models out of over 5000 models. However,
our work still faces the construction validity threat for conceptual models of
other modeling languages, which we aim to tackle as part of our future work.

Internal Validity regards the influences that can affect the independent
variables with respect to causality. In our work, we set the configuration parame-
ters for all the different approaches using a trial-and-error strategy. It is possible
that other parameter settings might yield different results. In fact, parameter
tuning of search algorithms is still considered an open research challenge [7]. We
mitigated this issue by doing a grid search over the different parameter values
possible by trying different possible combinations of the involved configuration
parameters.

External Validity regards the extent to which the research elements (sub-
jects, artifacts, etc.) are representative of actual element. We mitigated this
threat by using a Modelset dataset [25] of UML models used and peer reviewed
in the literature which comprises manually created and not synthetically gener-
ated UML models.

14 S.J. Ali et al.

6 Related Work

Next, we discuss related work on CMM. We consider works that treat the models
as graphs and separate them into i) works that focus on the structural properties
of the model in general; ii) works that focus on the conceptual model semantics,
and ii) works that utilize some kind of GNN to drive the modularization.

Structural Modularization. Bork et al. [8] propose ModuleER, a genetic
algorithm-based modularization approach for Entity Relationship (ER) models
using the graph structure information. We use ModulER as a baseline for GA-
based CMM. Stuckenschmidt and Klein [36] propose a structure-based method
clustering models based on the structure of the class hierarchy for real-world
ontologies like SUMO and the NCI cancer ontology. In [37], Stuckenschmidt and
Schlicht demonstrate that modularization based on structural properties alone
produces meaningful modules that intuitively make sense.

Saruladha et al. [34] propose two neighbor-based structural proximity mea-
sures, namely TNSP and DNSP, to decompose ontologies into disjoint clusters.
They consider concept pairs with common neighbors for clustering. Doran et
al. [9] present an approach to ontology module extraction. Furthermore, for soft-
ware systems, Andritsos et al. [3] present LIMBO which is a hierarchical clus-
tering algorithm based on the minimization of information loss when merging
two nodes in a cluster. The authors in [27, 28] present a hierarchical clustering-
based weighted linkage clustering (WLC) approach. In particular, they merge
entities together to form clusters, where two entities are merged together based
on their types, relationships and attributes. Hence, the new feature vector cor-
rectly reflects relationships between the entities. Pourasghar et al. [32] present
a modularization technique named GMA (Graph-based Modularization Algo-
rithm). In their work, they propose several metrics to evaluate the quality of
modularization solutions by utilizing structural features of the models.

Semantic Modularization. Grau et al. [16] propose a definition of a module
to capture the meaning of a given set of terms by including all axioms relevant
to the meaning of these terms while extracting the minimal modules is proposed.
In [12] abstraction rules or patterns that are used to abstract the information in
the model and create a high-level overview of a model is presented. If a pattern
is matched in the model, the model is updated with a higher-level representation
of the pattern. Figueiredo et al. [13] propose an approach for extracting views
from conceptual models represented in OntoUML. The approach utilizes the
real-world semantics of OntoUML modeling language¶ to structure views that
preserve the information content of the original model while breaking it down
into different modules based on ontological concerns. Guizzardi et al. [18] lever-
age the semantics of OntoUML and propose a formal approach for automated
modularization of conceptual models. They cluster an OntoUML model into a
number of so-called relational contexts, i.e., modules that capture all the infor-
mation needed for understanding entities in the scope of a given relationship.

¶ https://ontouml.org/

https://ontouml.org/

GNN-based Modularization: Approach & Comparison 15

GNN-based Modularization. GNNs have been recently used for graph clus-
tering. MinCutPool [6] proposes a graph clustering approach by continuously
relaxing the normalized minimum cut problem and training a GNN to com-
pute cluster assignments that minimize this objective. DMoN [30] extends spec-
tral clustering and presents an unsupervised pooling method inspired by the
modularity clustering measure. In [44], a GNN-based approach to encode node
structural and community-aware representation using mutual information maxi-
mization [5] is presented, which captures local and global structural information.
In our work, we compared our proposed DCMM with DMoN and DGI.

Synopsis. We summarize, that in case of structural modularization, most ap-
proaches related to conceptual model modularization approaches apply search-
based techniques such as genetic algorithm techniques for graph structural clus-
tering. There are several semantic modularization techniques which define rules
and patterns for semantic modularization. We further note that GNN models
are used for modularization but are not yet adapted to the specific require-
ments and applied to conceptual models. In this context, we presented our GNN-
based graph modularization i.e., DCMM and provided a comparative evaluation
against the existing GA and GNN approaches. We aim to combine the semantics
with the graph structural modularization as part of our future work.

7 Conclusion and Future Work

This paper presented a new GNN-based conceptual model modularization (CMM)
approach and evaluated its performance on a dataset of UML class diagrams and
compared the results to a GA-based approach and existing GNN-based graph
clustering approaches. Our results position our approach as a valuable GNN-
based CMM approach, outperforming the state-of-the-art GA-based approach
in over 30% of the cases overall and in almost 60% of the cases for the objective
of minimizing coupling using the balanced trade-off solution from the pareto
set. Our DCMM approach outperformed the existing GNN models for CMM
thereby showing DCMM’s effectiveness in the specific application to conceptual
models, addressing CMM challenges better than the more generic GNN mod-
els for graph clustering like DMoN and DGI. In the current work, we did not
include the model’s metamodel and natural language textual labels-based se-
mantics and we only focused on UML class diagrams. In the future, we plan
to extend our approach to several other modeling languages and utilize further
sources of semantics to train GNN models for CMM.

References

1. Ali, S.J., Guizzardi, G., Bork, D.: Enabling representation learning in ontology-
driven conceptual modeling using graph neural networks. In: 35th Intl. Conf. on
Advanced Information Systems Engineering (2023)

16 S.J. Ali et al.

2. Ali, S.J., Michael Laranjo, J., Bork, D.: A generic and customizable genetic
algorithms-based conceptual model modularization framework. In: International
Conference on Enterprise Design, Operations, and Computing. pp. 39–57. Springer
(2023)

3. Andritsos, P., Tzerpos, V.: Information-theoretic software clustering. IEEE Trans-
actions on Software Engineering 31(2), 150–165 (2005)

4. Behera, R.K., Naik, D., Rath, S.K., Dharavath, R.: Genetic algorithm-based com-
munity detection in large-scale social networks. Neural Computing and Applica-
tions 32, 9649–9665 (2020)

5. Belghazi, M.I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A.,
Hjelm, D.: Mutual information neural estimation. In: International conference on
machine learning. pp. 531–540. PMLR (2018)

6. Bianchi, F.M., Grattarola, D., Alippi, C.: Spectral clustering with graph neural
networks for graph pooling. In: International conference on machine learning. pp.
874–883. PMLR (2020)

7. Bill, R., Fleck, M., Troya, J., Mayerhofer, T., Wimmer, M.: A local and global tour
on momot. Software & Systems Modeling 18, 1017–1046 (2019)

8. Bork, D., Garmendia, A., Wimmer, M.: Towards a multi-objective modularization
approach for entity-relationship models. In: ER Forum, Demo and Poster 2020.
pp. 45–58. CEUR (2020)

9. Doran, P., Tamma, V., Iannone, L.: Ontology module extraction for ontology reuse:
an ontology engineering perspective. In: Proceedings of the sixteenth ACM confer-
ence on Conference on information and knowledge management. pp. 61–70 (2007)

10. Duong, C.T., Nguyen, T.T., Hoang, T.D., Yin, H., Weidlich, M., Nguyen, Q.V.H.:
Deep mincut: Learning node embeddings by detecting communities. Pattern Recog-
nition 134, 109126 (2023)

11. Eckle, K., Schmidt-Hieber, J.: A comparison of deep networks with relu activation
function and linear spline-type methods. Neural Networks 110, 232–242 (2019)

12. Egyed, A.: Automated abstraction of class diagrams. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM) 11(4), 449–491 (2002)

13. Figueiredo, G., Duchardt, A., Hedblom, M.M., Guizzardi, G.: Breaking into pieces:
An ontological approach to conceptual model complexity management. In: 2018
12th International Conference on Research Challenges in Information Science
(RCIS). pp. 1–10. IEEE (2018)

14. Fortunato, S., Hric, D.: Community detection in networks: A user guide. Physics
reports 659, 1–44 (2016)

15. Garmendia, A., Bork, D., Eisenberg, M., do Nascimento Ferreira, T., Kessentini,
M., Wimmer, M.: Leveraging artificial intelligence for model-based software anal-
ysis and design. In: Romero, J.R., Medina-Bulo, I., Chicano, F. (eds.) Optimising
the Software Development Process with Artificial Intelligence, pp. 93–117. Natural
Computing Series, Springer (2023)

16. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount: extracting
modules from ontologies. In: Proceedings of the 16th international conference on
World Wide Web. pp. 717–726 (2007)

17. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining. pp. 855–864 (2016)

18. Guizzardi, G., Sales, T.P., Almeida, J.P.A., Poels, G.: Automated conceptual model
clustering: a relator-centric approach. Software and Systems Modeling pp. 1–25
(2022)

GNN-based Modularization: Approach & Comparison 17

19. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. Advances in neural information processing systems 30 (2017)

20. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: Meth-
ods and applications. arXiv preprint arXiv:1709.05584 (2017)

21. Ishibuchi, H., Nojima, Y., Doi, T.: Comparison between single-objective and multi-
objective genetic algorithms: Performance comparison and performance measures.
In: 2006 IEEE International Conference on Evolutionary Computation. pp. 1143–
1150. IEEE (2006)

22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

23. LeClair, A., Marinache, A., El Ghalayini, H., MacCaull, W., Khedri, R.: A re-
view on ontology modularization techniques-a multi-dimensional perspective. IEEE
Transactions on Knowledge and Data Engineering 35(5), 4376–4394 (2022)

24. Liu, Z., Li, X., Peng, H., He, L., Philip, S.Y.: Heterogeneous similarity graph neural
network on electronic health records. In: 2020 IEEE International Conference on
Big Data (Big Data). pp. 1196–1205. IEEE (2020)

25. López, J.A.H., Cánovas Izquierdo, J.L., Cuadrado, J.S.: Modelset: a dataset for
machine learning in model-driven engineering. Software and Systems Modeling pp.
1–20 (2022)

26. Malekzadeh, M., Hajibabaee, P., Heidari, M., Zad, S., Uzuner, O., Jones, J.H.: Re-
view of graph neural network in text classification. In: 2021 IEEE 12th annual ubiq-
uitous computing, electronics & mobile communication conference (UEMCON).
pp. 0084–0091. IEEE (2021)

27. Maqbool, O., Babri, H.: Hierarchical clustering for software architecture recovery.
IEEE Transactions on Software Engineering 33(11), 759–780 (2007)

28. Maqbool, O., Babri, H.A.: The weighted combined algorithm: A linkage algorithm
for software clustering. In: Eighth European Conference on Software Maintenance
and Reengineering, 2004. CSMR 2004. Proceedings. pp. 15–24. IEEE (2004)

29. Mirjalili, S., Mirjalili, S.: Genetic algorithm. Evolutionary algorithms and neural
networks: theory and applications pp. 43–55 (2019)

30. Müller, E.: Graph clustering with graph neural networks. Journal of Machine
Learning Research 24, 1–21 (2023)

31. Newman, M.E.: Modularity and community structure in networks. Proceedings of
the national academy of sciences 103(23), 8577–8582 (2006)

32. Pourasghar, B., Izadkhah, H., Isazadeh, A., Lotfi, S.: A graph-based clustering
algorithm for software systems modularization. Information and Software Tech-
nology 133, 106469 (2021)

33. Proper, H.A., Guizzardi, G.: Modeling for enterprises; let’s go to rome via rime.
hand 1, 3 (2022)

34. Saruladha, K., Aghila, G., Sathiya, B.: Neighbour based structural proximity mea-
sures for ontology matching systems. In: Proceedings of the International Confer-
ence on Advances in Computing, Communications and Informatics. pp. 1079–1085
(2012)

35. Smajevic, M., Bork, D.: From conceptual models to knowledge graphs: a generic
model transformation platform. In: International Conference on Model Driven En-
gineering Languages and Systems Companion. pp. 610–614. IEEE (2021)

36. Stuckenschmidt, H., Klein, M.: Structure-based partitioning of large concept hi-
erarchies. In: The Semantic Web–ISWC 2004: Third International Semantic Web
Conference, Hiroshima, Japan, November 7-11, 2004. Proceedings 3. pp. 289–303.
Springer (2004)

18 S.J. Ali et al.

37. Stuckenschmidt, H., Schlicht, A.: Structure-based partitioning of large ontologies.
Modular ontologies: Concepts, theories and techniques for knowledge modulariza-
tion pp. 187–210 (2009)

38. Unger, R.: The genetic algorithm approach to protein structure prediction. Appli-
cations of Evolutionary Computation in Chemistry pp. 153–175 (2004)

39. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al.:
Graph attention networks. stat 1050(20), 10–48550 (2017)

40. Villegas Niño, A.: A filtering engine for large conceptual schemas. Doctoral thesis
(2013)

41. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in software engineering. Springer Science & Business Media (2012)

42. Wu, S., Sun, F., Zhang, W., Xie, X., Cui, B.: Graph neural networks in recom-
mender systems: a survey. ACM Computing Surveys 55(5), 1–37 (2022)

43. Xiong, J., Xiong, Z., Chen, K., Jiang, H., Zheng, M.: Graph neural networks for
automated de novo drug design. Drug Discovery Today 26(6), 1382–1393 (2021)

44. Zhang, T., Xiong, Y., Zhang, J., Zhang, Y., Jiao, Y., Zhu, Y.: Commdgi: com-
munity detection oriented deep graph infomax. In: Proceedings of the 29th ACM
international conference on information & knowledge management. pp. 1843–1852
(2020)

45. Zhao, W., Xu, G., Cui, Z., Luo, S., Long, C., Zhang, T.: Deep graph structural
infomax. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37,
pp. 4920–4928 (2023)

46. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M.:
Graph neural networks: A review of methods and applications. AI Open 1, 57–81
(2020)

	GNN-based Conceptual Model Modularization: Approach and GA-based Comparison

