
A web-based Modeling Tool for object-centric
Business Processes
Lisa Arnold, Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Ulm, Germany

Abstract
Business processes have the potential to enhance efficiency, flexibility, productivity and revenue. They
can automate routine procedures and thereby reduce costs in the process. In recent years, a plethora of
frameworks have been developed that facilitate the modelling of activity-centred business processes.
Nevertheless, there is a paucity of frameworks that concentrate on object-centric or data-driven busi-
ness processes. Furthermore, the majority of commercially available business process tools provide
local applications, with only a limited number leveraging the benefits of a web-based environment.
This demonstration paper presents the implementation of a web-based modelling environment that
implements the object-centric business process management approach: PHILharmonicFlows. The
implementation yielded a redesigned and enhanced web-based edition of the original, locally developed
prototype. Moreover, the web-based framework incorporates additional features, including sophisticated
verification algorithms, measurement metrics for the monitoring component, as well as a more user-
friendly graphical user interface (GUI) and functions that enable the modelling of a business process in
greater detail by setting constraints.

Keywords
Business process modelling tool, object-centric BPM, web-based, business process management, develop-
ment, framework, graphical user interface

1. Introduction

The advent of web-based technologies has eliminated the need for different versions for different
operating systems, removed installation hurdles, outsourced computing power, and required
administrators to maintain the framework without inconveniencing end users. Business process
modelling tools, such as the workflow management system Camunda, have recently taken
advantage of these benefits as well [1]. Nevertheless, most of them focus on traditional activity-
centric approaches, concentrating on the execution order of their activities. In addition to these
traditional approaches, a new paradigm of object-centric business process management has
emerged in recent years, exemplified by the framework PHILharmonicFlows, which focuses
on business objects and their business data as they exist in real processes [2].

In the object-centric process management paradigm, a business process is described in terms
of interacting business objects that correspond to real-world entities. These business objects
(i.e. user type and object type) and their relations, including their cardinalities and hierarchical
structure, are manifested in the Relational Process Structure (RPS) [3]. In addition,

BI-Week’24: Business Information Week, September 09–13th, 2024, Vienna, Austria
$ lisa.arnold@uni-ulm.de (L. Arnold); manfred.reichert@uni-ulm.de (M. Reichert)
� 0000-0002-2358-2571 (L. Arnold); 0000-0003-2536-4153 (M. Reichert)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:lisa.arnold@uni-ulm.de
mailto:manfred.reichert@uni-ulm.de
https://orcid.org/0000-0002-2358-2571
https://orcid.org/0000-0003-2536-4153
https://creativecommons.org/licenses/by/4.0


business attributes can be defined for each business object, which specify the business process.
The RPS, with its business objects and object attributes, defines the holistic data model of an
object-centric business process. At runtime, any number of object instances (restricted by their
cardinalities) can be created by the business objects. The runtime behaviour of these business
objects is defined in terms of object lifecycles [4]. In contrast to activity-centric processes,
object-centric business processes typically exhibit greater flexibility, as the objects within the
processes can be processed largely independent of one another [2].

In [5], the implementation of modelling objects with their relations and their lifecycle pro-
cesses for object-centric business processes is presented. The latter is constructed as a locally
installed software tool utilising a distributed microservice-based software architecture (original
framework for short). The web-based framework presented in this paper represents a reim-
plementation of the original framework, which has been extended to include expressions for
coordination process constraints [6], permissions, and sophisticated verification. Furthermore,
it incorporates measurement metrics (e.g. weights for Kalman filter [7]) for monitoring pre-
dictions. The latter minimises complexity for the modeller, thereby facilitating the creation of
correct business processes without the necessity for extensive knowledge of the sophisticated
object-oriented process paradigm.

In [8], the original framework is extended by a runtime engine which automatically generates
form sheets based on the structure of its lifecycle processes. The lifecycle contains states that
are linked to each other. In addition, the states represent the form sheets. Each state can contain
any number of steps (except the end state), which represent the input fields in the form sheets.
Furthermore, the aforementioned steps are based on the business attributes that have been
defined in the business objects within the data model.

The remainder of this paper is structured as follows. Section 2 provides insight into the core
functionality offered by the web-based, object-centric business process framework, as well as
an explanation of the functionality extensions in comparison to the original framework. Section
3 presents the development of the monitoring tool, including a description of its technical
architecture, with an overview of the components, frameworks and libraries employed. Section
4 concludes the paper.

2. Object-centric Business Processes

The object-centric business process modelling tool is comprised of four distinct components:
the data model (RPS and business data), their respective lifecycles, the coordination process(es)
and the associated permissions.

2.1. Data Model

The data model comprises two key elements: the Relational Process Structure (RPS) and the
business attributes. Figure 1 depicts a screenshot of the Data Model module within the
PHILharmonicFlows framework. The RPS establishes the hierarchy and the relations between
the business objects, as well as the cardinalities thereof. The web-based tool has been enhanced
with the incorporation of more sophisticated cardinalities. The original framework permits only
one-to-many relations (i.e. 1:n), whereas the web-based tool permits many-to-many relations (i.e.



Figure 1: Data Model of a recruitment business process example with its RPS and business attributes.

n:m). Furthermore, it is crucial to emphasise that the placeholders m and n can be constrained
by fixed values, both above and below (e.g. 3..5 : 2..n).

In addition, each business object is characterised by a number of business attributes that
describe the data the corresponding business objects. These business attributes are defined
by a specified data type (i.e. String, Number, Boolean, Date, File, or Relation). The attributes
of the data model serve as the foundation for the input fields of the auto-generated form
sheets. Furthermore, the attribute types String, Number, and Date permit the definition of
these attributes as list attributes, which permit the storage of multiple values within a single
business attribute. Moreover, the web-based framework enables the setting of predefined values
as input, which generates a drop-down menu at the runtime framework. In the event that
invalid entries are made when creating or changing business attributes (e.g. minimum is greater
than maximum restriction), error messages are generated to inform users of this issue. This
verification process serves to prevent the occurrence of deadlocks at runtime and to ensure
the integrity of the business process. In the original framework, there was no mechanism for
verifying the specifications when creating the business attributes.

2.2. Lifecycle Processes

The runtime behaviour of each business object is manifested by its own lifecycle process. Figure
2 depicts a screenshot of the Lifecycle module within the PHILharmonicFlows framework.
The runtime engine [8] automatically generates form sheets for user interactions based on the
defined lifecycle structure. To elaborate, each lifecycle state represents one form sheet during
the execution of the business process. In more detail, each lifecycle is initiated in one specific
start state and subsequently progresses through a series of intermediate states, ultimately
terminating in an empty end state, which is characterised by the absence of any steps. Each
state can be further refined by a number of steps that refer to the update of business attributes
and represent the input fields of a form sheet. Moreover, there are three kinds of steps: the basic
step, which creates an input field based on business attributes; the computation step, which sets
a specific value (e.g. a date or random number); and the predicate step, which models a decision
based on defined expressions (e.g. ’amount < 500’).



Figure 2: Lifecycle process of the Business Object Job Offer.

The original framework’s lifecycle is extended through the incorporation of a sophisticated
verification process and the automated determination of the Kalman weight for progress deter-
mination. Verification serves to regulate the lifecycle structure, and in the event of erroneous
modelling of lifecycles, an error message is returned to the end user. The verification algorithm
employs a preventative and highlighting technique. To illustrate, the lifecycle process, wherein
states represent nodes and transitions represent edges, must be a directed, acyclic, and connected
graph. The preventative logic block transitions to previous states in order to circumvent the
formation of cycles or loops. In order to facilitate comprehension by the modeller, impermissible
states are indicated by a red highlight when a transition is drawn, whereas permissible states are
indicated by a green highlight. In the event of an error message being displayed, the modeller
is able to click on it, which will result in all errors of this error message being highlighted in
red within the process model. This technique enables the avoidance of lengthy error-finding
processes, particularly in the case of large process models. To illustrate, a multitude of start
states exists. Upon clicking on the error message, all start states are indicated by a red highlight.
Moreover, the Kalman weight for the monitoring tool has been incorporated. The Kalman
weight is a value between 1 and 5 that is automatically determined based on the number and
kind of steps within a state. The Kalman filter is capable of predicting the progress of a single
lifecycle instance based on the aforementioned Kalman weights, thereby obviating the necessity
for an event log. In addition, the Kalman weight can be set by a modeller manually when the
estimated effort is greater or less than the automatically determined one in order to achieve
better results in determining progress [7].

2.3. Coordination Processes

A coordination process controls the interactions between the lifecycles of multiple objects and
defines the sequence of states between multiple lifecycle states. Thereby, a coordination step
is referred to a state of a lifecycle process. In general, a coordination process is defined from
the perspective of one business object. In other words, the lifecycle of one object is extended



Figure 3: Coordination process of the Business Objects Job Offer and Application.

with the lifecycle states of other objects to represent their correlations and interactions. More
specifically, a coordination process can be viewed as a graph where the vertices represent
the coordination steps and the edges represent the coordination transitions. The coordination
process graph is a directed, acyclic and connected graph that excludes backward transitions or
loops to previous coordination steps. Otherwise, cyclic dependencies and thus deadlocks are
possible. Therefore, the acyclicity of coordination processes is not a limitation of expressiveness,
but a necessity for correctness [6].

In contrast to the original framework, the web-based version is extended by a sophisti-
cated verification algorithm to identify, for example, cycles that span multiple coordination
processes and are therefore difficult for a modeller to detect. Figure ?? depicts a screenshot
of the Coordination Process module within the PHILharmonicFlows framework. The
verification algorithm employed an active mechanism to prevent erroneous modelling of the
coordination process, whereby any attempted modifications were blocked and the invalid targets
(i.e. coordination transitions and previous ports or coordination steps) highlighted in red. In
addition, a passive mechanism was utilised to examine the coordination process in nine distinct
error cases, returning error messages to the modeller in the event of any issues.

Furthermore, the web-based framework is augmented with the capacity to impose constraints
for each coordination transition. These constraints can be leveraged to facilitate the execution of
a business process in a more targeted and precise manner. To illustrate, in the case of a research
conference review process, a paper will be deemed appropriate for acceptance when at least
50% of the three to five assessors have determined that the paper meets the requisite standards
for acceptance. The web-based PHILharmonicFlows framework allows the modeller to define
constraints of this nature.

2.4. Permissions

In the original framework, the permissions are only listed in a table on the Permissions tab and
cannot be modified there. To illustrate, the permissions for business attributes are established in
an additional tab within the data model, while the permissions for lifecycle states are configured
in a drop-down menu on the button for the states. When defining permissions for the first time



in the original framework, many modellers encounter difficulties in locating the appropriate
setting for the permissions. Consequently, the configuration of permissions can now be carried
out directly on the Permissions module as depicted in Figure 4. In detail, permissions can be
defined for each business object depending on the individual users or user groups (i.e. user type).
Furthermore, the ability to assign execution rights to each user for each state in the lifecycle
(i.e. the activation of the ’Next’ button on the form sheets at runtime) has been incorporated. In
addition, the rights to read, write, or none can be specified for each user with respect to each
business attribute.

Figure 4: Permissions of the Business Object Job Offer.

3. Structure of the Modelling Tool

The web-based implementation of PHILharmonicFlowswas developed primarily in TypeScript.
The front end of the application has been constructed using the NextJS framework. The
framework employs the React library for the component-based development of reusable front
end elements. The graphs are created and manipulated using an extension of the mxGraph
JavaScript library, namely ts-mxGraph. This extension extends the mx-Graph library with types,
thereby making it TypeScript compatible. mxGraph is a client-side library for creating and
modelling diagrams and graphs that works on all common browsers without any additional
add-ons. The front end of the web-based PHILharmonicFlows framework is constituted by a
set of pages, components, and assets. A page may contain one or more React elements, which in
turn may contain other elements, components, or simple HTML elements. The pages delineate
the content that will be rendered in the user’s browser while they interact with the application.
Components contain reusable code, which may be employed in a variety of contexts. For
instance, the editor component is utilized in the data model editor, the lifecycle process editor,
and the coordination process editor. Assets contain the styling of the application in Cascading



Style Sheets (CSS) files. The front end is in communication with the controllers of the back end
and the editor services, receiving data that is necessary for its rendering or sending data from
the front end to the database.

The application’s back end is based on the Node.js framework NestJs, which is designed
for the development of scalable server-side applications. Upon deployment of the application
in a Docker container, a NestJs web server is initiated, facilitating the transfer of requisite
data to the front end. The back end is constituted by modules, controllers and editors. The
controllers represent the primary conduit for communication between the front end and the
back end. The transfer of data is accomplished by transmitting a request from the front end to a
designated route, which is made available by a controller. The controller will then transfer the
request and its associated data to a service. This service will then manipulate the request data,
if necessary, and execute a database call. Subsequently, a response will be transmitted to the
request’s originator. In certain instances, the front end may engage in direct communication
with the editor or parser services. In such instances, data that was previously retrieved from the
database via the front end is injected into an instance of an editor- or parser service, thereby
enabling the service to be initialised correctly and process the data. Infrequently, the editor- or
parser services are also required to communicate with the controllers in order to retrieve data
from the database, which is necessary for the service functions to be executed correctly.

The data of PHILharmonicFlowswas managed using the MongoDB databasemanagement
system (i.e. NoSQL := Not only SQL) . This is a non-relational database that employs the use
of documents structured in a JSON-like format. Regardless, it is possible to utilise logical
references between disparate stored documents, thereby representing the relations between
them. Furthermore, it offers a multitude of query and aggregation functions, which result
in enhanced performance compared to relational databases. Furthermore, MongoDB enables
straightforward vertical and horizontal scaling due to its non-relational architecture [9, 10]. The
front end is responsible for communicating with the MongoDB database in order to retrieve the
necessary data and present it to the user in an appropriate format. As soon as the user makes
any modifications to the modelled process, these changes are sent to the back end, where they
are then reflected in the database.

The PHILharmonicFlows application, inclusive of both its front-end and back-end com-
ponents, as well as the database, is executed within a dedicated docker container to ensure
portability and scalability. Each container is configured to expose a port, thereby facilitating
external access. This ensures that the user is able to interact with the application by sending
requests to a designated controller endpoint. Typically, user requests are initiated through the
graphical user interface (GUI), which is defined by the front end.

4. Summary and Outlook

This paper presents the redesigned and enhanced web-based framework of the object-centric
business process PHILharmonicFlows, originally developed at the local level. The web-based
framework eliminates the challenges associated with the installation and management of the
application, as well as offering the outsourcing of computing resources. Moreover, the web-based
framework incorporates additional features, including sophisticated verification algorithms,



measurement metrics for the monitoring component, as well as the setting of permissions in
a user-friendly manner and the possibility of defining expressions for coordination process
constraints. The web-based PHILharmonicFlows is currently in a state of development. The
further work is focused on enhancing the user-friendliness and user interface of the lifecycle
processes. This involves the configuration of the states and steps, which is a highly intricate
matter. In addition, further work focused on the validation of expressions defined in the
coordination process constraints, the implementation of an export and import function, and the
development of additional measurement metrics for the predictions generated by the monitoring
tool.

Acknowledgments

This work is part of the ProcMape project, funded by the KMU Innovativ Program of the Federal
Ministry of Education and Research, Germany (F.No. 01IS23045B).

References

[1] B. Ruecker, Practical Process Automation, " O’Reilly Media, Inc.", 2021.
[2] V. Künzle, M. Reichert, Philharmonicflows: towards a framework for object-aware process

management, Journal of Software Maintenance and Evolution: Research and Practice 23
(2011) 205–244.

[3] S. Steinau, K. Andrews, M. Reichert, The relational process structure, in: Int. Conf. on
Advanced Information Systems Engineering, Springer, 2018, pp. 53–67.

[4] S. Steinau, K. Andrews, M. Reichert, Executing lifecycle processes in object-aware process
management, in: Int. Symp. on Data-Driven Process Discovery and Analysis, Springer,
2017, pp. 25–44.

[5] S. Steinau, K. Andrews, M. Reichert, A modeling tool for philharmonicflows objects and
lifecycle processes (2017).

[6] S. Steinau, K. Andrews, M. Reichert, Coordinating large distributed relational process
structures, Software and Systems Modeling 20 (2021) 1403–1435.

[7] L. Arnold, M. Breitmayer, M. Reichert, A one-dimensional kalman filter for real-time
progress prediction in object lifecycle processes, in: 2021 IEEE 25th International Enterprise
Distributed Object Computing Workshop (EDOCW), IEEE, 2021, pp. 176–185.

[8] K. Andrews, S. Steinau, M. Reichert, A tool for supporting ad-hoc changes to object-aware
processes, in: 2018 IEEE 22nd International Enterprise Distributed Object Computing
Workshop (EDOCW), IEEE, 2018, pp. 220–223.

[9] A. Nayak, A. Poriya, D. Poojary, Type of nosql databases and its comparison with relational
databases, International Journal of Applied Information Systems 5 (2013) 16–19.

[10] S. G. G. Sahib, A review of non relational databases their types advantages and disadvan-
tages, International Journal of Engineering &Technology 2 (2013).


	1 Introduction
	2 Object-centric Business Processes
	2.1 Data Model
	2.2 Lifecycle Processes
	2.3 Coordination Processes
	2.4 Permissions

	3 Structure of the Modelling Tool
	4 Summary and Outlook

