
Revision of a Smart Factory Software
Architecture from Monolith to Microservices

Ronny Seiger1 and Lukas Malburg2,3

1 Institute of Computer Science, University of St.Gallen, 9000 St.Gallen, Switzerland
ronny.seiger@unisg.ch

2 Artificial Intelligence and Intelligent Information Systems, University of Trier,
54296 Trier, Germany, https://www.wi2.uni-trier.de

3 German Research Center for Artificial Intelligence (DFKI)
Branch University of Trier, Behringstraße 21, 54296 Trier, Germany

malburgl@uni-trier.de / lukas.malburg@dfki.de

Abstract. Software architecture plays an important role in the devel-
opment of modern, complex software systems as it influences a system’s
quality attributes and ability to grow with future demand. Designing
the software architecture of cyber-physical systems (CPS) becomes even
more challenging due to their capability of directly influencing the phys-
ical world and thus introducing new non-functional requirements related
to fault-tolerance, safety, and resource scarcity. Existing research focuses
on systems engineering to achieve the vertical integration of CPS with
an organization’s information systems and processes, but not on soft-
ware architecture to horizontally extend existing systems with new CPS.
In this report we describe the process of revising an existing monolithic
software architecture for a smart factory towards a microservices-based
architecture to meet these new requirements and prepare the factory to
be extended with new CPS. For the revision of the existing architec-
ture, we provide an analysis of its code base before and after changes,
a description of the refactoring process, and discuss relevant new non-
functional requirements and architecture options. We elaborate on the
architectural decisions favoring microservices and analyze the new archi-
tecture regarding improved quality attributes to evaluate the system.

Keywords: Cyber-physical Systems · Software Architecture · Internet
of Things · Microservices · Industry 4.0.

1 Introduction

The architecture of a complex software system has significant influence on its
quality attributes and on the feasibility of extending it with new components and
functionality in the future [7]. Decisions related to software architecture have a
strong impact on the software system and are challenging to revise later [30],
which is why they are based on extensive trade-off discussions by software archi-
tects [26]. Software architecture has also become of increasing importance when

https://orcid.org/0000-0003-1675-2592
https://orcid.org/0000-0002-6866-0799
https://www.wi2.uni-trier.de


2 R. Seiger and L. Malburg

developing systems that influence and are influenced by the physical world–
Cyber-physical Systems (CPS) [16]. Typical systems engineering approaches dis-
cuss the vertical integration of compounds of sensors and actuators forming CPS
(e.g., production machines) with a company’s information systems (e.g., based on
the ANSI/ISA-95 pyramid [25]). However, these CPS become increasingly com-
plex and the horizontal integration of CPS [42] requires deeper investigations of
software architectural aspects. Here, CPS might introduce novel non-functional
requirements (NFRs), e.g., related to safety, energy consumption, connectivity,
or constraint resources, which are usually not considered when deciding about
software architectures in purely digital software systems [30]. On the other hand,
common NFRs, e.g., related to performance and elasticity, might not be relevant
in CPS as computing resources are constraint. Nevertheless, the CPS software
architecture should enable all components to flexibly interact with each other
while fulfilling functional and non-functional requirements.

In this paper, we report our experience with revising the software architecture
of a model factory as a typical CPS. Starting from a monolithic software system
controlling the factory that has originally been developed as a proof-of-concept
prototype with focus on vertical integration [34,21,22], we present an analysis
of its architecture and code base [6], our experience working with it, and new
non-functional requirements. Then, we will discuss breaking down the mono-
lithic architecture into a microservices-based architecture to address the new
NFRs. For these changes we elaborate on the architectural decision forces and
decisions related to the architectural styles and service sizes, including their im-
plementation, communication, and orchestration. These developments are driven
by requirements from Industry 4.0 [11] with the goal of achieving more flexible
production scenarios that exhibit high fault-tolerance, extensibility, and main-
tainability while also considering resource constraints and safety [25].

The paper is structured as follows: We elaborate on experiences with the
existing smart factory architecture and problems we have identified in Section 2.
Here we also identify new requirements as objectives of a solution in a first
design science cycle [28] to improve the operation of the smart factory system.
In Section 3 we build and develop a revised version of the software architecture
as main artifact to serve as basis for an extension of the CPS. We evaluate and
demonstrate this solution in Section 4. Section 5 presents related work. Section 6
concludes the paper and shows potential future work.

2 Existing Smart Factory Software Architecture

2.1 Software and Hardware Components

We use a smart factory model with components provided by Fischertechnik as
basic hardware platform for our Business Process Management (BPM) related
research [22,34,20,21]. The smart factory simulates a production line that con-
sists of 6 production stations, each representing a different capability that can
be executed in a production process (e.g., burning, milling, or transportation). A
production station is managed by an embedded controller that executes low-level



Revision of a Smart Factory Software Architecture 3

commands to control connected sensors and actuators. These commands are sent
from a self-developed, monolithic control software running on a dedicated com-
puter. The software architecture of this software system is technically layered
with one Web Service (cf. Fig. 1) exposing the capabilities of all production
stations as REST resources [34,22,21]. The encapsulation of the low-level com-
mands as high-level capabilities that view each production station as an entity
is achieved via an object-oriented Domain Model (cf. Fig. 1) following domain-
driven design [4]. As depicted in Fig. 1, we use a Workflow Management System
(WfMS) as an orchestrator of the production that facilitates the modeling of
processes in BPMN 2.0 [27], their automation, adaptation [20], and mining [34].

Workflow
Management

System (WfMS)

Web Service

Domain Model

High-Bay
Warehouse

Vacuum
Gripper
Robot

Oven Sorting
Machine

Milling
Machine

Environment
& Camera

Smart Factory Control Software

HBW

EC

VGR

SM

MMOV

Service
Invocations

Fig. 1. Original architecture of smart factory control software.

2.2 Architectural Decisions

The decisions regarding the design and implementation of the smart factory con-
trol system have mostly been driven by functional requirements to control the
production line for BPM-based research, and focused on the vertical integration
of all hardware components from sensors to services [25] in a proof-of-concept
prototype. The goal was to encapsulate the sensors and actuators belonging
to the production stations at a reasonable level of abstraction and to provide
service-based access to this high-level functionality [34]. NFRs related to agility,
elasticity, or scalability did not play an essential role as the operation of the smart
factory is limited by the physical resources (i.e., sensors, actuators, materials)
available to execute requests and activities in the production processes [34,21].
A detailed description of the existing software system and driving functional
requirements can be found in [34] and [21]. We decided to base the initial imple-
mentation of the smart factory control system on a monolithic service-based
architecture for the following reasons (NFRs) [30]:



4 R. Seiger and L. Malburg

– Costs of Prototype: To serve as basis for several research projects [22], we
aimed to have a quick and relatively low-cost proof-of-concept implemen-
tation of the smart factory control system. Priorities here were not on the
software architecture, but on the prototypical implementation to have a basis
for advanced research on flexible and adaptive processes in CPS [20,19].

– Simplicity : We aimed for a rather simple solution to achieve a quick imple-
mentation of the factory control system that is relatively easy to maintain.

– Functionality : The functionality of the individual stations is not too complex.
Each station usually offers 1 to 3 different types of capabilities [34,21].

– Configurability and Deployability : The control software should be easy to
configure, to deploy, and to run on a standard desktop computer.

2.3 Experience and New Requirements

We informally collected anecdotal experience from three research groups work-
ing with the monolithic implementation of the smart factory control system.
All agree that the low operational costs and easy deployability of the monolithic
architecture lead to a positive experience when using the software system to con-
trol the smart factory. In normal operation mode, a high degree of fulfillment of
the functional requirements related to the production stations can be observed.
However, over time all groups identified new NFRs related to fault-tolerance, re-
coverability, and extensibility [32] that are not fulfilled by the system. Moreover,
all groups experienced an increased complexity of debugging and maintaining
the software system, in particular during experimental evaluations [20,19,34].
New requirements originated from the interactions of the system with the physi-
cal world and the rather unreliable hardware/software components of the smart
factory model, which often lead to exceptions, unexpected behavior, and network
disconnects of its embedded controllers [20]. Furthermore, the smart factory con-
trol system is intended to serve as basis for our BPM-related research [22,13],
which entails extending its functionality and features to fulfill new requirements
from the implementation of research prototypes on a regular basis. Here, the
software system does not perform well either. The non-functional characteristics
that became more prominent include:

– Fault-tolerance: The operations of the smart factory are frequently inter-
rupted by unexpected events at the physical production stations or by errors
within the embedded controllers (e.g., loss of network connection) and soft-
ware. These errors regularly lead to the entire system not working properly
anymore and thus, to reduced availability and need for human interventions.

– Recoverability: Although errors typically relate to only one production sta-
tion or one hardware component, the entire control system has to be stopped
and restarted to recover from the errors, which leads to unnecessary down-
times for all stations. Recoverability of the system is low.

– Extensibility and Maintainability: The smart factory will be extended with
additional CPS (robots) to simulate more complex production scenarios [32].
However, the extensibility of the existing software system is rather low as



Revision of a Smart Factory Software Architecture 5

adding new devices and functionality requires many changes in the existing
code base. This symptom also leads to low maintainability of the software
system as fixing errors, modifying code, and adding new features often result
in performing many changes that may also break the system [12,23].

These insights motivate us to investigate the following two research questions:

RQ1 What are reasons for a CPS software system to show symptoms of poor
fault-tolerance, recoverability, extensibility and maintainability?
RQ2 How does the architecture of a CPS software system need to be designed
to address these non-functional requirements?

2.4 Code Analysis of the CPS Software System

In Section 2.3 we already provided indications to answer RQ1 related to the
smart factory’s hardware. Learning factories offer a suitable, low-cost playground
for CPS and BPM research as discussed in [22]. However, the hardware compo-
nents are less reliable than in real production settings, and the hardware-software
controllers (PLCs) do not implement any safety or fault-tolerance mechanisms.
Thus, issues related to hardware have to be addressed by the software system
controlling the smart factory. To further investigate RQ1, we performed a static
code analysis of the Python-based code base of the existing factory control sys-
tem4 using Sonargraph Architect5. Our main focus here was on code entangle-
ment, dependency cycles, large files/classes, complexity, and code duplication, as
issues in any one of these may lead to the symptoms described in Section 2.3 [2].

Fig. 2. Code analysis of existing smart factory control software.

4 https://github.com/ics-unisg/smart-factory-monolith
5 https://www.hello2morrow.com/products/sonargraph/architect9

https://github.com/ics-unisg/smart-factory-monolith
https://www.hello2morrow.com/products/sonargraph/architect9


6 R. Seiger and L. Malburg

A summary of the analysis results is shown in Fig. 2 (left); a simplified depen-
dency graph comprising all Python files organized in packages in Fig. 2 (right).
Even though the complexity of individual classes, methods, and code fragments
is low, a relatively high percentage of code is entangled, indicating a rather
rigid software design [23] and technical debt resulting from the quick prototype
implementations, which lead to a high effort in maintainability and low extensi-
bility. The same holds for the identified code redundancy indicating issues in the
object-oriented design. However, almost no cyclic dependencies exist, which is a
good sign of clean architecture. The main issue influencing fault-tolerance and
recoverability is related to the implementations of the web service on top of the
domain model (cf. Fig. 1) and the single class initializing the entire functionality
of the domain model (file: init factory.py). While the rest of the domain is
already structured into individual, functionally cohesive modules per production
station, the web service (file: app.py) contains all REST end points and logic
to call the methods of all classes in the domain model. This one file with >1.3k
lines of code (LoC) and the initializer class make the software system a monolith–
violating the single-responsibility principle [23], among others–and impose the
rather poor performance regarding fault-tolerance and recoverability on it [30].
As indicated in Section 2.3, an issue with the hardware of one production station
(e.g., loss of network connection to a controller), requires a restart of the entire
software system to recover from the error. With these insights, we can confirm in
response to RQ1 that a monolithic architecture and the identified issues (smells)
in the code base lead to a decrease of fault-tolerance, recoverability, extensibility
and maintainability, also for software systems controlling CPS [36,7].

3 Revision of the Smart Factory Architecture

The new non-functional characteristics discussed in Section 2.3 became the driv-
ing forces influencing the operation of the existing software system. To prevent
the accumulation of more technical debt and architecture erosion with future
extensions [7], and to improve the fulfillment of the new NFRs (cf. RQ2), we
decided to redesign and refactor the software system. Thereby, the fulfillment of
the functional requirements (cf. Section 2.1) should not be affected.

3.1 Architecture Options

The new NFRs (cf. Section 2.3) motivated the revision of the monolithic soft-
ware system controlling the smart factory. Based on these new driving forces we
evaluated typical software architectural styles summarized by Richards and Ford
in [30] regarding their suitability. In addition to the NFRs, the authors discuss
the type of partitioning of an architectural style–technical partitioning or do-
main partitioning–and the number of possible standalone software components
(Architectural Quanta) the specific style might lead to (one or many) [30].

With maintainability, fault-tolerance, and extensibility being among the main
driving forces, we decided that the main strategy of revising the architecture and



Revision of a Smart Factory Software Architecture 7

implementation is to focus on decoupling of components. Thus, we discarded all
options that involve monolithic styles resulting in only one architectural quantum
(e.g., layered architecture, modular monoliths, microkernel architectures, and
service-oriented architectures) as these are likely to not improve fault-tolerance
and availability [30]. The software system controlling the production stations of
the factory does not require a sophisticated database infrastructure or shared
access to data from the stations [3]. For this reason, we discarded the options
of service-based and space-based architectures as non-monolithic architectural
styles. Finally, we decided that a microservices architecture is the best fit
regarding fault-tolerance and extensibility as driving forces addressing RQ2 [30].

3.2 Architecture Decisions and Implementation

As discussed, we found the best trade-offs in a microservices architecture [30].
While keeping the functionality intact, the main question regarding the redesign
concerns the integrators and disintegrators that determine the size of one mi-
croservice, i.e., how the monolith should be split up. Typical integrators and
disintegrators in digital services include different levels of: 1) performance and
throughput, 2) code volatility, 3) data security, and 4) transactional boundaries
in specific parts of a software system [30]. If parts of a system show similar charac-
teristics regarding one or more of these aspects, then they might be put together
(integrated) in one service. If they exhibit different characteristics, then these
parts are likely to be disintegrated into different services. However, the afore-
mentioned four aspects do not apply in the given CPS setting. In addition to
the new NFRs (cf. Section 2.3), we determined the following aspects to influence
the decisions regarding the size of a microservice in the smart factory:

– Functionality : Despite the low amount of functionality associated with each
production station (cf. Section 2.1), the one web service controlling the fac-
tory depicted in Fig. 1 implements in total 15+ resources that expose the
high-level functionality of all stations [34]. As stated in Section 2.4, this is a
sign of low functional cohesion [23]. We see a need for smaller web services.

– Physical setup: The physical layout and configuration of the production line
naturally groups all sensors and actuators belonging to one production sta-
tion (or production cell). These sensors and actuators are wired to the em-
bedded controllers on a per-production-station basis (cf. Fig. 1), i.e., one
embedded controller is responsible for one production station.

Service Sizes: The physical setup as a novel aspect influencing architectural de-
cisions in CPS became the main force to decide about the service granularities.
The physical grouping of components related to one embedded controller and
thus to one production station–one responsibility–is a natural disintegrator and
fits well to the size of one microservice [3]. In addition, we often encounter issues
in the factory’s operation on the level of individual controllers, which supports
this service granularity as it isolates failures on the level of a production station.



8 R. Seiger and L. Malburg

Workflow Management System

High-Bay
Warehouse

MS HBW

Milling
Machine

MS MM

Oven

MS OV

Environment
& Camera

MS EC

Vacuum
Gripper
Robot

MS VGR

Sorting
Machine

MS SM

HBW

EC

VGR

SM

MMOV

Fig. 3. Revised microservices (MS)-based architecture of the smart factory system.

The decision of having one microservice per production station partitions the
architecture related to the domain functionality and capabilities of individual
production stations, i.e., we will have a bounded context per station (subdo-
main [3]) and thus a higher functional cohesion per service [4].

Refactoring: The implementation of this new architectural style based on the re-
sults from the static code analysis of the original system [6] was straightforward
as the domain core of the existing monolithic system was already structured
based on the different production stations (cf. Section 2.4). With the original
source code and additional metadata (e.g., architectural diagrams) available,
we were able to follow the decomposition process described in [6]. In the object-
oriented domain model, there was one class per type and instance of a production
station [34,21], which contained the low-level logic to control the station’s sen-
sors and actuators via the respective embedded controller. The monolithic web
service on top of the domain core also grouped the resources based on the pro-
duction stations [34,21]. Therefore, it was relatively easy to refactor the monolith
and to extract the relevant logic and service implementations into individual mi-
croservices. The main refactoring that needed to be done was splitting up the
web service (file: app.py) and factory initializer class (file: init factory.py)
based on the individual production stations. As we were not using a sophisti-
cated database infrastructure to persist data, decomposing the software system
into microservices was straightforward [3]. Fig. 3 shows the resulting new archi-
tecture. The interactions of the microservices as part of the production processes
are still orchestrated by one WfMS [34]. In our setup, all 6 microservices are de-
ployed to and running in a container-based Docker environment on a desktop
computer, which is connected to the embedded controllers via Ethernet.



Revision of a Smart Factory Software Architecture 9

3.3 Code Analysis of the Microservices-based System

Similar to the code analysis for the existing system described in Section 2.4,
we analyzed the code base6 of the revised, microservices-based smart factory
control system using Sonargraph, considering code entanglement, dependency
cycles, large files/classes, complexity, and code duplication.

Fig. 4. Code analysis of revised smart factory control software.

A summary of the analysis results can be seen in Fig. 4 (left). A simplified
dependency graph showing all microservices in dedicated modules and exem-
plary Python files is depicted in Fig. 4 (right). Here we see that the code has
been reorganized from a more object-oriented structure into domain-partitioned
modules (e.g., hbw, sm, vgr, etc.) each representing a microservice for one pro-
duction station. The redesign and refactoring show a major improvement and
reduction regarding code entanglement and code in large files. We achieved this
through decomposition, reorganizing the code, and splitting up the web service
implementation into the individual microservices. However, we also observe an
increase in code redundancy, which is often encountered when migrating from
an object-oriented monolith to microservices [5]. In our implementation, each
production station has common functionality and attributes implemented in a
base class that is then specialized by the production station. When migrating
to microservices, we decided to replicate this base class for each microservice,
which led to an increase of the code base by 44% and duplicated code by 20%.
Several strategies exist to deal with shared code (e.g., shared libraries, shared
services, sidecar pattern [5]). In our revised implementation, we decided to use
code replication as we do not expect many future changes to the base class [5].

6 https://github.com/ics-unisg/smart-factory-microservices

https://github.com/ics-unisg/smart-factory-microservices


10 R. Seiger and L. Malburg

4 Evaluation and Discussion

By investigating RQ1 based on the analysis of the original code base and archi-
tecture in Section 2.4, we identified various issues in the design and code of the
monolithic system that led to a poor performance when fulfilling the new NFRs
fault-tolerance, recoverability, extensibility, and maintainability discussed in Sec-
tion 2.3. In this section we evaluate the effects of the revised, microservices-based
architecture on these NFRs based on a qualitative discussion to answer RQ2.
These discussions partially refer to the results of analyzing both versions of the
software system using Sonargraph. The detailed metrics are contained in the
provided repositories for the monolith and microservices-based implementation.

4.1 Maintainability

Maintainability improved due to the microservices being less complex regarding
their functionality and implementation [15]. A stricter adherence to the single re-
sponsibility principle led to smaller microservices with individual sizes between
871 and 2175 LoC (compared to a total of 3778 LoC for the monolith) and
cleaner implementations with higher functional cohesion, less coupling, and less
dependencies. The average component dependency ACD [2] decreased from 3.71
to 1.55; the propagation cost metric according to MacCormack et al. [2] strongly
decreased from 17.69 to 3.88; and the cumulative structural debt index for sys-
tem decreased from 11 to 0 [2]–all indications of a cleaner implementation and
improved structure [23]. Thus, we can assume that the individual microservices
are easier to maintain and to debug [2]. Bugs can be more easily located and
associated with a specific microservice as there is higher functional cohesion and
less source code inside one service [12]. However, in Section 3.3 we have also iden-
tified an increase in code redundancy due to a common base class being reused in
all microservices, which increased the Average Complexity (based on McCabe’s
cyclomatic complexity) [2] of the entire system from 1.36 to 1.59. In general,
replicated code leads to an increase in maintainability of a software system as
all changes at one location need to be tracked and consistently changed across all
copies, often requiring code versioning [5]. In our implementation, we assume the
implementation of the base class to be stable and barely changing–circumstances
where replicated code is acceptable in a microservices context [5].

4.2 Fault-tolerance and Recoverability

The NFRs fault-tolerance and recoverability became the most important driv-
ing forces when working with the smart factory system. Among many sources,
Richards and Ford attribute an improved fault-tolerance and recoverability to
a microservice-based architecture compared to monolithic approaches [30]. We
can confirm this observation in our CPS context as decomposing the monolithic
architecture into per-production-station microservices increased fault-tolerance
and recoverability. By focusing on the decoupling of components, we were able
to confine potential errors to the scope of a production station. Hence, hardware



Revision of a Smart Factory Software Architecture 11

errors (e.g., related to the connectivity of a production station’s controller) do
not affect other stations or services. We can easily resolve issues at the gran-
ularity of a production station and recover the failed component by restart-
ing the corresponding controller and microservice to restore normal operations.
The application of techniques from fault-tolerant programming may further im-
prove the system’s tolerance against software errors. Our focus was on addressing
hardware-related issues as primary source for interruptions of the smart factory.

The deployment and operation of the now 6 microservices has become more
complex. However, the platform used for running the containerized microservices
greatly reduces this complexity as all containers can be started at once and re-
deployed and restarted individually to recover from errors [8], without adding
significant overhead to the computer’s resource consumption [37]. So far, our ex-
perience working with the revised software system, especially for experimental
settings, confirms an increased fault-tolerance, better recoverability, and thus a
higher overall availability of the production system. Nevertheless, a higher num-
ber of involved (micro)services also means an increase of network communication
among the services, which may results in higher latency and and communication
issues [1]. These aspects do not play a significant role in our setup with all ser-
vices running in the same local, container-based environment. A more systematic
analysis of the software system’s availability, ability to recover from errors, and
need for human interventions remains subject to future work.

4.3 Extensibility

One of the main goals of this work was to prepare the smart factory software sys-
tem for an extension with additional CPS. As acknowledged in literature [30], a
microservice-based architecture exhibits a better extensibility than a monolithic
system, which motivated us to revise the existing software architecture. The re-
sults of analyzing the revised implementation (cf. Sections 3.3 and 4.1) show a
decrease in dependencies, coupling, and code entanglement, which are indications
of improved extensibility. Adding new microservices to the software system is fa-
cilitated due to the lower coupling and no shared code and dependencies between
services. A new Fischertechnik-based production station of known type can be
added non-invasively to the production line by simply instantiating a second con-
tainer for the respective microservice with a slightly different configuration (e.g.,
IP address). A new production station of unknown type can be added based on a
new microservice where the common base class is reused and extended with the
machine specific implementation. We have successfully extended the implemen-
tation and instantiated the containers for a different smart factory configuration
with multiple instances of Fischertechnik-based machines [21].

To further demonstrate the extensibility, we added four robots–two mobile
robots of type TurtleBot 4 Pro and two robotic grippers arms of type Dobot
Magician–to the existing CPS (cf. Fig. 5). As the microservices-based style of the
CPS dictates the software architecture, it has been straightforward to integrate
the control systems for the robots into the overall CPS, also in a (micro)service-
based manner with dedicated services for each robot. Putting these systems



12 R. Seiger and L. Malburg

Smart Factory

Robotic Gripper Arms

Mobile Service Robots

Fig. 5. Extended smart manufacturing setup with new CPS.

together with one or more of the existing microservices of the smart factory
would have led to a more monolithic approach negatively impacting the quality
attributes. The two robotic gripper arms have been integrated in a service-based
manner, sharing a common instance of ROS2 [18] to control both robots and
expose their capabilities via web services. The shared ROS2 instance is suitable
because of the close physical proximity of both robots and the need to save
resources on the available computer running the ROS2 instance. The two mobile
robots are regarded as standalone microservices, which are each controlled by a
dedicated ROS2 instance on a Raspberry Pi 4. The main driver for having one
microservice per robot was to enable both robots to operate autonomously from
any other software service and thus not being reliant on a constant network
connection [33]. Adding the robots in this (micro)service-based way did not
require any modifications to the existing microservices-based software system
controlling the smart factory, and it allows us to orchestrate all services of all
components uniformly based on REST using a WfMS. In our setup, additional
communication among all services is facilitated by using a messaging and stream
processing system [34]. Table 1 summarizes all decision forces and decisions we
took when revising the smart factory system and adding the robots to the CPS.

4.4 Research Questions and Limitations

With answering RQ1 in Section 2.4, we identified in our case study the monolithic
style and issues in the software design and code base related to code entangle-
ment, high coupling and low cohesion, as main reasons for the existing CPS soft-
ware system to perform rather poorly regarding the NFRs fault-tolerance, recov-
erability, extensibility, and maintainability [36]. The results of discussing these
NFRs after revising the existing monolithic software system to a microservices-
based architecture indicate an improvement of all these NFRs. Thus, as an an-
swer to RQ2, we suggest to focus on decoupling monolithic CPS control systems
towards more individual standalone components, preferably microservices the



Revision of a Smart Factory Software Architecture 13

Table 1. Summary of architectural decisions in the extended CPS.

CPS
Architectural

Style
Service
Size

Decision Forces

Smart Factory Microservices
1 production

station

Physical setup,
fault-tolerance, extensibility,

functionality

Robotic
Gripper Arms

Service-based 1 robot
Physical setup,

computing resources,
fault-tolerance

Mobile
Service Robots

Microservices 1 robot
Autonomy, energy consumption,

connectivity, fault-tolerance

size of a production station or production cell, to improve fault-tolerance, recov-
erability, extensibility, and maintainability.

As a limitation we acknowledge that we work with a small-scale learning
factory [22], which does not have any hard real-time and safety constraints,
and which allows us to interface with the embedded controllers using high-level
programming languages from desktop computers. Assuming that these kinds of
open interfaces and full control of the hardware exist in a real industrial produc-
tion environment might not be completely realistic, but with machine interfaces
becoming more accessible and standardized (e.g., based on the Asset Adminis-
tration Shell [32]) we can observe a trend towards more openness and interoper-
ability in the future. The learning factories serve as bridges between completely
simulated, virtual environments and real-life production settings. They can be
used to educate shop floor personnel and to conduct sophisticated low-cost and
low-effort research of CPS and BPM in more realistic settings [22]. Therefore, we
deem the insights of this work to be also relevant more generally in CPS as exist-
ing CPS software systems are usually structured in a more monolithic way and
also exhibit typical software design flaws and code smells [36], which negatively
impact the quality attributes of the software systems. We hypothesize that our
proposal of moving towards more decoupled service-based architectures, where
the physical setup of the individual CPS components has a strong influence
on the service granularities, can be generally applied to improve non-functional
characteristics of distributed CPS. Moreover, we observe an increasing number
of research groups using a variant of the learning factory as basis for their re-
search in BPM, CPS/IoT, software engineering, and automation. The insights
and artifacts presented in this experience report might facilitate their setup of
the factory based on our proposed microservices-based software architecture.

5 Related Work

Literature surveys on using microservices-based software architectures in the
context of IoT can be found in [35] and [29]. In [35] the authors discuss about
NFRs relevant in IoT and they provide pointers to different approaches that
discuss solutions to fulfill these NFRs.



14 R. Seiger and L. Malburg

In [15] the authors highlight the flexibility and versatility of using microser-
vices to implement small features bounded within processes in IoT, in contrast to
heavy weight inflexible monoliths. A microservice architecture for the industrial
IoT (IIoT) is presented by Dobaj et al. in [3]. The authors discuss different types
of design patterns for IIoT and relevant decision forces such as dependability,
performance, and flexibility. Based on these, a layered microservices-based ar-
chitecture and the application of the design patterns to address the IIoT-related
NFRs is presented. Among others, the aspects of decomposition into subdo-
mains and shared data access in the microservices architecture are discussed,
which are well aligned with the decisions and discussions we have presented
in our approach. The design of a microservice architecture for a smart city IoT
platform that organizes the microservices around business capabilities, similar to
the production stations representing the capabilities of the smart factory, is pre-
sented in [14]. Deciding about the granularity of individual microservices based
on business capabilities is also a common strategy in purely digital, non-CPS
systems as pointed out by the authors in [8] discussing their move from mono-
liths to microservices. NFRs around architectures for IIoT are discussed in [39].
Besides high availability, extensibility, and interoperability, which are discussed
in our work, too, the authors emphasize real-time operations and cyber-security
as critical aspects in IIoT. We agree that these are highly relevant in real-world
deployments, but we found them less significant for the used smart factory model
in our laboratory environment. We skipped these non-functional aspects due to
their complexity and refer to the discussions in [39].

A literature study on the migration of monoliths to microservices is presented
in [1]. In addition, the authors provide a case study on how to benchmark the mi-
gration by comparing the performance and consumption of computing resources
of the system before and after migration. This study can be very helpful for our
future work to conduct a more quantitative analysis of our proposed revision of
the existing CPS software architecture. The aspect of migrating existing software
architectures in CPS towards microservices is discussed in [17] and [31]. Sarkar
et al. showcase their migration of a complex monolith controlling an industry
automation system to containerized microservices [31]. Among others, they are
faced with strong couplings between components, which increases the difficulty
of breaking down the monolith. Liu et al. present migration strategies that con-
sider economic factors to reduce downtimes and costs when moving an active
production line to microservices [17], which is only partially relevant in our lab-
oratory environment. In [24], the authors discuss the migration of a software
system for autonomous UAV-based infrastructure inspection from monolith to
microservices. They nicely show the benefits microservices for scalable data pro-
cessing in their work, which will become relevant for our smart factory once we
put a stronger focus on processing of the data emitted from the factory.

Several works discuss the design of specific IoT architectures in smart pro-
duction [38,10,41], which also address the aspect of integrating different types
of robots based on ROS [38]. All approaches follow service-based architectures
that feature messaging systems for loosely coupled interactions, similar to our



Revision of a Smart Factory Software Architecture 15

proposed architecture. Additionally, various works discuss the use of workflow
engines, as we do, to orchestrate processes [38] and (micro)services [40].

From the discussion of related work we can conclude that we identified and
address NFRs with high relevance for IIoT and CPS in our work. The method-
ological approach, decision forces, and architectural decisions we took when
breaking down the smart factory monolith into microservices and extending it
with robots are well aligned with existing literature. Moreover, we can confirm
that containerization of microservices, messaging systems for communication,
and WfMS for orchestration of processes are suitable means for creating flexible
and extensible software architectures that promote high fault-tolerance, auton-
omy, and loose coupling in complex software systems controlling CPS.

6 Summary and Future Work

In this work we discussed the case of revising an existing monolithic software
architecture for a smart factory control system towards a microservices-based ar-
chitecture. The original design and implementation of the monolith was driven
by functional requirements and the goal to have a quick, low-cost implemen-
tation of a prototype to serve as basis for more advanced research. However,
the experience from working with this prototype led to the emergence of new
non-functional requirements (NFRs) related to fault-tolerance, recoverability,
maintainability and extensibility, which became the main driving forces to de-
compose the monolith into microservices as it did not fulfill these new NFRs
sufficiently. We analyzed the monolith and its code base to identify the reasons
for not fulfilling these new NFRs. A discussion of architectural options and ways
to mitigate identified flaws in the software design and code base led us to focus on
decoupling of the monolithic system’s components and breaking the system down
into microservices. The physical grouping of sensors and actuators belonging to
one production station that is managed by one embedded controller became a
natural fit to dictate the size of one microservice representing the station’s busi-
ness capabilities. An analysis of the new system’s design and code base showed
improvements regarding maintainability, coupling, and cohesion of components.
The characteristics of the new microservices-based architecture confirm an im-
proved fault-tolerance, recoverability, and extensibility, which we demonstrated
by non-invasively adding new robots controlled by (micro)services to the exist-
ing CPS software architecture. All microservices are orchestrated by a workflow
management system enabling advanced research on BPM and IoT [9].

In future work we plan to adapt the implementation of the individual mi-
croservices to be compatible with the asset administration shell to improve ex-
tensibility and interoperability with other systems [32]. Furthermore, we will
conduct a more systematic quantitative evaluation of the CPS where we will
compare different architectural decisions and their impact on NFRs and resource
consumption. In this context, we plan to develop a formal model based on [26]
and a case base of experiences regarding architectural decisions in CPS to doc-
ument their impact on NFRs and provide guidance to software architects.



16 R. Seiger and L. Malburg

References

1. Bjørndal, N., Bucchiarone, A., Mazzara, M., Dragoni, N., Dustdar, S., Kessler,
F.B., Wien, T.: Migration from monolith to microservices: Benchmarking a case
study. Tech. Rep. (2020)

2. Ciceri, C., Farley, D., Ford, N., Harmel-Law, A., Keeling, M., Lilienthal, C., Rosa,
J., Von Zitzewitz, A., Weiss, R., Woods, E.: Software Architecture Metrics. ”
O’Reilly Media, Inc.” (2022)

3. Dobaj, J., Iber, J., Krisper, M., Kreiner, C.: A microservice architecture for the
industrial internet-of-things. In: Proceedings of the 23rd European Conference on
Pattern Languages of Programs. pp. 1–15 (2018)

4. Evans, E.: Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional (2004)

5. Ford, N., Richards, M., Sadalage, P., Dehghani, Z.: Software Architecture: The
Hard Parts. ” O’Reilly Media, Inc.” (2021)

6. Fritzsch, J., Bogner, J., Zimmermann, A., Wagner, S.: From monolith to microser-
vices: A classification of refactoring approaches. In: Software Engineering Aspects
of Continuous Development and New Paradigms of Software Production and De-
ployment: First International Workshop, DEVOPS 2018, Chateau de Villebrumier,
France, March 5-6, 2018, Revised Selected Papers 1. pp. 128–141. Springer (2019)

7. Furrer, F.J.: Future-proof software-systems. Springer (2019)

8. Gouigoux, J.P., Tamzalit, D.: From monolith to microservices: Lessons learned on
an industrial migration to a web oriented architecture. In: 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). pp. 62–65 (2017)

9. Janiesch, C., Koschmider, A., Mecella, M., Weber, B., Burattin, A., Di Ciccio,
C., Fortino, G., Gal, A., Kannengiesser, U., Leotta, F., et al.: The internet of
things meets business process management: a manifesto. IEEE Systems, Man, and
Cybernetics Magazine 6(4), 34–44 (2020)

10. Jepsen, S.C., Worm, T.: Designing and evaluating interoperable industry 4.0 mid-
dleware software architecture: Reconfiguration of robotic system. In: European
Conference on Software Architecture. pp. 205–220. Springer (2023)

11. Kagermann, H., Wahlster, W.: Ten Years of Industrie 4.0. Sci 4(3), 26 (2022)

12. Kalske, M., Mäkitalo, N., Mikkonen, T.: Challenges when moving from monolith
to microservice architecture. In: Current Trends in Web Engineering: ICWE 2017
International Workshops, Liquid Multi-Device Software and EnWoT, practi-O-
web, NLPIT, SoWeMine, Rome, Italy, June 5-8, 2017, Revised Selected Papers 17.
pp. 32–47. Springer (2018)

13. Kirikkayis, Y., Gallik, F., Seiger, R., Reichert, M.: Integrating iot-driven events into
business processes. In: International Conference on Advanced Information Systems
Engineering. pp. 86–94. Springer (2023)

14. Krylovskiy, A., Jahn, M., Patti, E.: Designing a smart city internet of things plat-
form with microservice architecture. In: 2015 3rd international conference on future
internet of things and cloud. pp. 25–30. IEEE (2015)

15. Lai, C., Boi, F., Buschettu, A., Caboni, R.: Iot and microservice architecture for
multimobility in a smart city. In: 2019 7th International Conference on Future
Internet of Things and Cloud (FiCloud). pp. 238–242. IEEE (2019)

16. Lee, E.A.: Cyber physical systems: Design challenges. In: 2008 11th IEEE inter-
national symposium on object and component-oriented real-time distributed com-
puting (ISORC). pp. 363–369. IEEE (2008)



Revision of a Smart Factory Software Architecture 17

17. Liu, Y., Yang, B., Ren, X., Liu, Q., Liu, S., Guan, X.: E2ms: An efficient and
economical microservice migration strategy for smart manufacturing. IEEE Trans-
actions on Services Computing (2024)

18. Macenski, S., Foote, T., Gerkey, B., Lalancette, C., Woodall, W.: Robot operat-
ing system 2: Design, architecture, and uses in the wild. Science Robotics 7(66),
eabm6074 (2022)

19. Malburg, L., Brand, F., Bergmann, R.: Adaptive Management of Cyber-Physical
Workflows by Means of Case-Based Reasoning and Automated Planning. In: 26th
EDOC Workshops. LNBIP, vol. 466, pp. 79–95. Springer (2023)

20. Malburg, L., Hoffmann, M., Bergmann, R.: Applying MAPE-K control loops for
adaptive workflow management in smart factories. J. Intell. Inf. Syst. pp. 1–29
(2023)

21. Malburg, L., Klein, P., Bergmann, R.: Semantic Web Services for AI-Research with
Physical Factory Simulation Models in Industry 4.0. In: Int. Conf. on Innovative
Intelligent Industrial Production and Logistics. pp. 32–43. ScitePress (2020)

22. Malburg, L., Seiger, R., Bergmann, R., Weber, B.: Using Physical Factory Simu-
lation Models for Business Process Management Research. In: BPM Workshops.
LNBIP, vol. 397, pp. 95–107. Springer (2020)

23. Martin, R.C.: Clean architecture. Prentice Hall (2017)
24. Matlekovic, L., Schneider-Kamp, P.: From monolith to microservices: Soft-

ware architecture for autonomous uav infrastructure inspection. arXiv preprint
arXiv:2204.02342 (2022)

25. Monostori, L.: Cyber-physical production systems: Roots, expectations and r&d
challenges. Procedia Cirp 17, 9–13 (2014)

26. Nowak, M., Pautasso, C.: Team situational awareness and architectural decision
making with the software architecture warehouse. In: European Conference on
Software Architecture. pp. 146–161. Springer (2013)

27. Object Management Group: BPMN 2.0 specification. https://www.omg.org/

spec/BPMN/2.0/ (2011)
28. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science

research methodology for information systems research. Journal of management
information systems 24(3), 45–77 (2007)

29. Razzaq, A.: A systematic review on software architectures for iot systems and fu-
ture direction to the adoption of microservices architecture. SN Computer Science
1(6), 350 (2020)

30. Richards, M., Ford, N.: Fundamentals of software architecture: an engineering ap-
proach. O’Reilly Media (2020)

31. Sarkar, S., Vashi, G., Abdulla, P.: Towards transforming an industrial automa-
tion system from monolithic to microservices. In: 23rd Intern. Conf. on Emerging
Technologies and Factory Automation (ETFA). vol. 1, pp. 1256–1259. IEEE (2018)

32. Schnicke, F., Kuhn, T., Antonino, P.O.: Enabling industry 4.0 service-oriented ar-
chitecture through digital twins. In: Software Architecture: 14th European Confer-
ence, ECSA 2020 Tracks and Workshops, L’Aquila, Italy, September 14–18, 2020,
Proceedings 14. pp. 490–503. Springer (2020)

33. Seiger, R., Herrmann, S., Aßmann, U.: Self-healing for distributed workflows in the
internet of things. In: 2017 IEEE International Conference on Software Architec-
ture Workshops (ICSAW). pp. 72–79. IEEE (2017)

34. Seiger, R., Malburg, L., Weber, B., Bergmann, R.: Integrating process management
and event processing in smart factories: A systems architecture and use cases. J.
Manuf. Syst. 63, 575–592 (2022)

https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/BPMN/2.0/


18 R. Seiger and L. Malburg

35. Siddiqui, H., Khendek, F., Toeroe, M.: Microservices based architectures for iot
systems-state-of-the-art review. Internet of Things p. 100854 (2023)

36. Sonnleithner, L., Oberlehner, M., Kutsia, E., Zoitl, A., Bácsi, S.: Do you smell it
too? towards bad smells in iec 61499 applications. In: 2021 26th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). pp. 1–4.
IEEE (2021)

37. Sun, X., Liang, Y., Huang, H.: Design and implementation of internet of things
platform based on microservice and lightweight container. In: 2020 IEEE 9th
Joint International Information Technology and Artificial Intelligence Conference
(ITAIC). vol. 9, pp. 1353–1357. IEEE (2020)

38. Traganos, K., Grefen, P., Vanderfeesten, I., Erasmus, J., Boultadakis, G., Bouklis,
P.: The horse framework: A reference architecture for cyber-physical systems in
hybrid smart manufacturing. Journ. of Manufacturing Systems 61, 461–494 (2021)

39. Urbina, M., Acosta, T., Lázaro, J., Astarloa, A., Bidarte, U.: Smart sensor: Soc
architecture for the industrial internet of things. IEEE Internet of Things Journal
6(4), 6567–6577 (2019)

40. Valderas, P., Torres, V., Serral, E.: Modelling and executing iot-enhanced business
processes through bpmn and microservices. Journal of Systems and Software 184,
111139 (2022)

41. Xia, C., Zhang, Y., Wang, L., Coleman, S., Liu, Y.: Microservice-based cloud
robotics system for intelligent space. Robotics and Autonomous Systems 110, 139–
150 (2018)

42. Zuehlke, D.: Smartfactory—towards a factory-of-things. Annual reviews in control
34(1), 129–138 (2010)


	Revision of a Smart Factory Software Architecture from Monolith to Microservices

